Spaces:
Runtime error
Runtime error
xunsong.li
commited on
Commit
·
dd93214
1
Parent(s):
75c09e2
fix out length exceeds than pose frames
Browse files- .gitignore +8 -1
- app.py +12 -8
.gitignore
CHANGED
@@ -1,4 +1,11 @@
|
|
1 |
__pycache__/
|
2 |
pretrained_weights/
|
3 |
output/
|
4 |
-
.venv/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
__pycache__/
|
2 |
pretrained_weights/
|
3 |
output/
|
4 |
+
.venv/
|
5 |
+
mlruns/
|
6 |
+
data/
|
7 |
+
|
8 |
+
*.pth
|
9 |
+
*.pt
|
10 |
+
*.pkl
|
11 |
+
*.bin
|
app.py
CHANGED
@@ -114,29 +114,33 @@ class AnimateController:
|
|
114 |
src_fps = get_fps(pose_video_path)
|
115 |
|
116 |
pose_list = []
|
117 |
-
|
118 |
-
|
119 |
-
[transforms.Resize((height, width)), transforms.ToTensor()]
|
120 |
-
)
|
121 |
-
for pose_image_pil in pose_images[:length]:
|
122 |
pose_list.append(pose_image_pil)
|
123 |
-
pose_tensor_list.append(pose_transform(pose_image_pil))
|
124 |
|
125 |
video = self.pipeline(
|
126 |
ref_image,
|
127 |
pose_list,
|
128 |
width=width,
|
129 |
height=height,
|
130 |
-
video_length=
|
131 |
num_inference_steps=num_inference_steps,
|
132 |
guidance_scale=cfg,
|
133 |
generator=generator,
|
134 |
).videos
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
ref_image_tensor = pose_transform(ref_image) # (c, h, w)
|
137 |
ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze(0) # (1, c, 1, h, w)
|
138 |
ref_image_tensor = repeat(
|
139 |
-
ref_image_tensor, "b c f h w -> b c (repeat f) h w", repeat=
|
140 |
)
|
141 |
pose_tensor = torch.stack(pose_tensor_list, dim=0) # (f, c, h, w)
|
142 |
pose_tensor = pose_tensor.transpose(0, 1)
|
|
|
114 |
src_fps = get_fps(pose_video_path)
|
115 |
|
116 |
pose_list = []
|
117 |
+
total_length = min(length, len(pose_images))
|
118 |
+
for pose_image_pil in pose_images[:total_length]:
|
|
|
|
|
|
|
119 |
pose_list.append(pose_image_pil)
|
|
|
120 |
|
121 |
video = self.pipeline(
|
122 |
ref_image,
|
123 |
pose_list,
|
124 |
width=width,
|
125 |
height=height,
|
126 |
+
video_length=total_length,
|
127 |
num_inference_steps=num_inference_steps,
|
128 |
guidance_scale=cfg,
|
129 |
generator=generator,
|
130 |
).videos
|
131 |
|
132 |
+
new_h, new_w = video.shape[-2:]
|
133 |
+
pose_transform = transforms.Compose(
|
134 |
+
[transforms.Resize((new_h, new_w)), transforms.ToTensor()]
|
135 |
+
)
|
136 |
+
pose_tensor_list = []
|
137 |
+
for pose_image_pil in pose_images[:total_length]:
|
138 |
+
pose_tensor_list.append(pose_transform(pose_image_pil))
|
139 |
+
|
140 |
ref_image_tensor = pose_transform(ref_image) # (c, h, w)
|
141 |
ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze(0) # (1, c, 1, h, w)
|
142 |
ref_image_tensor = repeat(
|
143 |
+
ref_image_tensor, "b c f h w -> b c (repeat f) h w", repeat=total_length
|
144 |
)
|
145 |
pose_tensor = torch.stack(pose_tensor_list, dim=0) # (f, c, h, w)
|
146 |
pose_tensor = pose_tensor.transpose(0, 1)
|