# coding=utf-8 # Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ CPMAnt model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "openbmb/cpm-ant-10b": "https://huggingface.co./openbmb/cpm-ant-10b/blob/main/config.json" # See all CPMAnt models at https://huggingface.co./models?filter=cpmant } class CpmAntConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`CpmAntModel`]. It is used to instantiate an CPMAnt model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the CPMAnt [openbmb/cpm-ant-10b](https://huggingface.co./openbmb/cpm-ant-10b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30720): Vocabulary size of the CPMAnt model. Defines the number of different tokens that can be represented by the `input` passed when calling [`CpmAntModel`]. hidden_size (`int`, *optional*, defaults to 4096): Dimension of the encoder layers. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads in the Transformer encoder. dim_head (`int`, *optional*, defaults to 128): Dimension of attention heads for each attention layer in the Transformer encoder. dim_ff (`int`, *optional*, defaults to 10240): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 48): Number of layers of the Transformer encoder. dropout_p (`float`, *optional*, defaults to 0.0): The dropout probabilitiy for all fully connected layers in the embeddings, encoder. position_bias_num_buckets (`int`, *optional*, defaults to 512): The number of position_bias buckets. position_bias_max_distance (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. init_std (`float`, *optional*, defaults to 1.0): Initialize parameters with std = init_std. prompt_types (`int`, *optional*, defaults to 32): The type of prompt. prompt_length (`int`, *optional*, defaults to 32): The length of prompt. segment_types (`int`, *optional*, defaults to 32): The type of segment. use_cache (`bool`, *optional*, defaults to `True`): Whether to use cache. Example: ```python >>> from transformers import CpmAntModel, CpmAntConfig >>> # Initializing a CPMAnt cpm-ant-10b style configuration >>> configuration = CpmAntConfig() >>> # Initializing a model from the cpm-ant-10b style configuration >>> model = CpmAntModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "cpmant" def __init__( self, vocab_size: int = 30720, hidden_size: int = 4096, num_attention_heads: int = 32, dim_head: int = 128, dim_ff: int = 10240, num_hidden_layers: int = 48, dropout_p: int = 0.0, position_bias_num_buckets: int = 512, position_bias_max_distance: int = 2048, eps: int = 1e-6, init_std: float = 1.0, prompt_types: int = 32, prompt_length: int = 32, segment_types: int = 32, use_cache: bool = True, **kwargs, ): super().__init__(**kwargs) self.prompt_types = prompt_types self.prompt_length = prompt_length self.segment_types = segment_types self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.dim_head = dim_head self.dim_ff = dim_ff self.num_hidden_layers = num_hidden_layers self.position_bias_num_buckets = position_bias_num_buckets self.position_bias_max_distance = position_bias_max_distance self.dropout_p = dropout_p self.eps = eps self.use_cache = use_cache self.vocab_size = vocab_size self.init_std = init_std