from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES logger = logging.get_logger(__name__) @add_end_docstrings(PIPELINE_INIT_ARGS) class ImageToTextPipeline(Pipeline): """ Image To Text pipeline using a `AutoModelForVision2Seq`. This pipeline predicts a caption for a given image. Example: ```python >>> from transformers import pipeline >>> captioner = pipeline(model="ydshieh/vit-gpt2-coco-en") >>> captioner("https://huggingface.co./datasets/Narsil/image_dummy/raw/main/parrots.png") [{'generated_text': 'two birds are standing next to each other '}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This image to text pipeline can currently be loaded from pipeline() using the following task identifier: "image-to-text". See the list of available models on [huggingface.co/models](https://huggingface.co./models?pipeline_tag=image-to-text). """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) requires_backends(self, "vision") self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES ) def _sanitize_parameters(self, max_new_tokens=None, generate_kwargs=None, prompt=None, timeout=None): forward_kwargs = {} preprocess_params = {} if prompt is not None: preprocess_params["prompt"] = prompt if timeout is not None: preprocess_params["timeout"] = timeout if generate_kwargs is not None: forward_kwargs["generate_kwargs"] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: forward_kwargs["generate_kwargs"] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) forward_kwargs["generate_kwargs"]["max_new_tokens"] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__(self, images: Union[str, List[str], "Image.Image", List["Image.Image"]], **kwargs): """ Assign labels to the image(s) passed as inputs. Args: images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): The pipeline handles three types of images: - A string containing a HTTP(s) link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly The pipeline accepts either a single image or a batch of images. max_new_tokens (`int`, *optional*): The amount of maximum tokens to generate. By default it will use `generate` default. generate_kwargs (`Dict`, *optional*): Pass it to send all of these arguments directly to `generate` allowing full control of this function. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and the call may block forever. Return: A list or a list of list of `dict`: Each result comes as a dictionary with the following key: - **generated_text** (`str`) -- The generated text. """ return super().__call__(images, **kwargs) def preprocess(self, image, prompt=None, timeout=None): image = load_image(image, timeout=timeout) if prompt is not None: if not isinstance(prompt, str): raise ValueError( f"Received an invalid text input, got - {type(prompt)} - but expected a single string. " "Note also that one single text can be provided for conditional image to text generation." ) model_type = self.model.config.model_type if model_type == "git": model_inputs = self.image_processor(images=image, return_tensors=self.framework) input_ids = self.tokenizer(text=prompt, add_special_tokens=False).input_ids input_ids = [self.tokenizer.cls_token_id] + input_ids input_ids = torch.tensor(input_ids).unsqueeze(0) model_inputs.update({"input_ids": input_ids}) elif model_type == "pix2struct": model_inputs = self.image_processor(images=image, header_text=prompt, return_tensors=self.framework) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation model_inputs = self.image_processor(images=image, return_tensors=self.framework) text_inputs = self.tokenizer(prompt, return_tensors=self.framework) model_inputs.update(text_inputs) else: raise ValueError(f"Model type {model_type} does not support conditional text generation") else: model_inputs = self.image_processor(images=image, return_tensors=self.framework) if self.model.config.model_type == "git" and prompt is None: model_inputs["input_ids"] = None return model_inputs def _forward(self, model_inputs, generate_kwargs=None): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"], list) and all(x is None for x in model_inputs["input_ids"]) ): model_inputs["input_ids"] = None if generate_kwargs is None: generate_kwargs = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. inputs = model_inputs.pop(self.model.main_input_name) model_outputs = self.model.generate(inputs, **model_inputs, **generate_kwargs) return model_outputs def postprocess(self, model_outputs): records = [] for output_ids in model_outputs: record = { "generated_text": self.tokenizer.decode( output_ids, skip_special_tokens=True, ) } records.append(record) return records