Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Bloom configuration""" | |
from collections import OrderedDict | |
from typing import TYPE_CHECKING, Any, List, Mapping, Optional | |
from packaging import version | |
if TYPE_CHECKING: | |
from ... import PreTrainedTokenizer, TensorType | |
from ...configuration_utils import PretrainedConfig | |
from ...onnx import OnnxConfigWithPast, PatchingSpec | |
from ...utils import is_torch_available, logging | |
logger = logging.get_logger(__name__) | |
BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"bigscience/bloom": "https://huggingface.co./bigscience/bloom/resolve/main/config.json", | |
"bigscience/bloom-560m": "https://huggingface.co./bigscience/bloom-560m/blob/main/config.json", | |
"bigscience/bloom-1b1": "https://huggingface.co./bigscience/bloom-1b1/blob/main/config.json", | |
"bigscience/bloom-1b7": "https://huggingface.co./bigscience/bloom-1b7/blob/main/config.json", | |
"bigscience/bloom-3b": "https://huggingface.co./bigscience/bloom-3b/blob/main/config.json", | |
"bigscience/bloom-7b1": "https://huggingface.co./bigscience/bloom-7b1/blob/main/config.json", | |
} | |
class BloomConfig(PretrainedConfig): | |
""" | |
This is the configuration class to store the configuration of a [`BloomModel`]. It is used to instantiate a Bloom | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to the Bloom architecture | |
[bigscience/bloom](https://huggingface.co./bigscience/bloom). | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 250880): | |
Vocabulary size of the Bloom model. Defines the maximum number of different tokens that can be represented | |
by the `inputs_ids` passed when calling [`BloomModel`]. Check [this | |
discussion](https://huggingface.co./bigscience/bloom/discussions/120#633d28389addb8530b406c2a) on how the | |
`vocab_size` has been defined. | |
hidden_size (`int`, *optional*, defaults to 64): | |
Dimensionality of the embeddings and hidden states. | |
n_layer (`int`, *optional*, defaults to 2): | |
Number of hidden layers in the Transformer encoder. | |
n_head (`int`, *optional*, defaults to 8): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): | |
The epsilon to use in the layer normalization layers. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`): | |
If enabled, use the layer norm of the hidden states as the residual in the transformer blocks | |
hidden_dropout (`float`, *optional*, defaults to 0.1): | |
Dropout rate of the dropout function on the bias dropout. | |
attention_dropout (`float`, *optional*, defaults to 0.1): | |
Dropout rate applied to the attention probs | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
pretraining_tp (`int`, *optional*, defaults to `1`): | |
Experimental feature. Tensor parallelism rank used during pretraining with Megatron. Please refer to [this | |
document](https://huggingface.co./docs/transformers/parallelism) to understand more about it. This value is | |
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this | |
issue](https://github.com/pytorch/pytorch/issues/76232). Note also that this is enabled only when | |
`slow_but_exact=True`. | |
slow_but_exact (`bool`, *optional*, defaults to `False`): | |
Experimental feature. Whether to use slow but exact implementation of the attention mechanism. While | |
merging the TP rank tensors, due to slicing operations the results may be slightly different between the | |
model trained on Megatron and our model. Please refer to [this | |
issue](https://github.com/pytorch/pytorch/issues/76232). A solution to obtain more accurate results is to | |
enable this feature. Enabling this will hurt the computational time of the inference. Will be probably | |
resolved in the future once the main model has been fine-tuned with TP_rank=1. | |
Example: | |
```python | |
>>> from transformers import BloomConfig, BloomModel | |
>>> # Initializing a Bloom configuration | |
>>> configuration = BloomConfig() | |
>>> # Initializing a model (with random weights) from the configuration | |
>>> model = BloomModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "bloom" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
attribute_map = { | |
"num_hidden_layers": "n_layer", | |
"num_attention_heads": "n_head", | |
} | |
def __init__( | |
self, | |
vocab_size=250880, | |
hidden_size=64, | |
n_layer=2, | |
n_head=8, | |
layer_norm_epsilon=1e-5, | |
initializer_range=0.02, | |
use_cache=True, | |
bos_token_id=1, | |
eos_token_id=2, | |
apply_residual_connection_post_layernorm=False, | |
hidden_dropout=0.0, | |
attention_dropout=0.0, | |
pretraining_tp=1, # TP rank used when training with megatron | |
slow_but_exact=False, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
# Backward compatibility with n_embed kwarg | |
n_embed = kwargs.pop("n_embed", None) | |
self.hidden_size = hidden_size if n_embed is None else n_embed | |
self.n_layer = n_layer | |
self.n_head = n_head | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_range = initializer_range | |
self.use_cache = use_cache | |
self.pretraining_tp = pretraining_tp | |
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm | |
self.hidden_dropout = hidden_dropout | |
self.attention_dropout = attention_dropout | |
self.bos_token_id = bos_token_id | |
self.eos_token_id = eos_token_id | |
self.slow_but_exact = slow_but_exact | |
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) | |
class BloomOnnxConfig(OnnxConfigWithPast): | |
torch_onnx_minimum_version = version.parse("1.12") | |
def __init__( | |
self, | |
config: PretrainedConfig, | |
task: str = "default", | |
patching_specs: List[PatchingSpec] = None, | |
use_past: bool = False, | |
): | |
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past) | |
if not getattr(self._config, "pad_token_id", None): | |
# TODO: how to do that better? | |
self._config.pad_token_id = 0 | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) | |
if self.use_past: | |
# BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 | |
self.fill_with_past_key_values_(common_inputs, direction="inputs", inverted_values_shape=True) | |
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"} | |
else: | |
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"} | |
return common_inputs | |
def num_layers(self) -> int: | |
return self._config.n_layer | |
def num_attention_heads(self) -> int: | |
return self._config.n_head | |
def atol_for_validation(self) -> float: | |
return 1e-3 | |
def generate_dummy_inputs( | |
self, | |
tokenizer: "PreTrainedTokenizer", | |
batch_size: int = -1, | |
seq_length: int = -1, | |
is_pair: bool = False, | |
framework: Optional["TensorType"] = None, | |
) -> Mapping[str, Any]: | |
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( | |
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework | |
) | |
# We need to order the input in the way they appears in the forward() | |
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]}) | |
# Need to add the past_keys | |
if self.use_past: | |
if not is_torch_available(): | |
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") | |
else: | |
import torch | |
batch, seqlen = common_inputs["input_ids"].shape | |
# Not using the same length for past_key_values | |
past_key_values_length = seqlen + 2 | |
head_dim = self._config.hidden_size // self.num_attention_heads | |
past_key_shape = ( | |
batch * self.num_attention_heads, | |
head_dim, | |
past_key_values_length, | |
) | |
past_value_shape = ( | |
batch * self.num_attention_heads, | |
past_key_values_length, | |
head_dim, | |
) | |
ordered_inputs["past_key_values"] = [ | |
(torch.zeros(past_key_shape), torch.zeros(past_value_shape)) for _ in range(self.num_layers) | |
] | |
ordered_inputs["attention_mask"] = common_inputs["attention_mask"] | |
if self.use_past: | |
mask_dtype = ordered_inputs["attention_mask"].dtype | |
ordered_inputs["attention_mask"] = torch.cat( | |
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 | |
) | |
return ordered_inputs | |
def default_onnx_opset(self) -> int: | |
return 13 | |