Thesis-Demo / transformers_4_35_0 /pipelines /table_question_answering.py
xuan2k's picture
Dev demo app
f8f5cdf
raw
history blame
19.9 kB
import collections
import types
import numpy as np
from ..utils import (
add_end_docstrings,
is_tensorflow_probability_available,
is_tf_available,
is_torch_available,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, Dataset, Pipeline, PipelineException
if is_torch_available():
import torch
from ..models.auto.modeling_auto import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES,
)
if is_tf_available() and is_tensorflow_probability_available():
import tensorflow as tf
import tensorflow_probability as tfp
from ..models.auto.modeling_tf_auto import (
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES,
)
class TableQuestionAnsweringArgumentHandler(ArgumentHandler):
"""
Handles arguments for the TableQuestionAnsweringPipeline
"""
def __call__(self, table=None, query=None, **kwargs):
# Returns tqa_pipeline_inputs of shape:
# [
# {"table": pd.DataFrame, "query": List[str]},
# ...,
# {"table": pd.DataFrame, "query" : List[str]}
# ]
requires_backends(self, "pandas")
import pandas as pd
if table is None:
raise ValueError("Keyword argument `table` cannot be None.")
elif query is None:
if isinstance(table, dict) and table.get("query") is not None and table.get("table") is not None:
tqa_pipeline_inputs = [table]
elif isinstance(table, list) and len(table) > 0:
if not all(isinstance(d, dict) for d in table):
raise ValueError(
f"Keyword argument `table` should be a list of dict, but is {(type(d) for d in table)}"
)
if table[0].get("query") is not None and table[0].get("table") is not None:
tqa_pipeline_inputs = table
else:
raise ValueError(
"If keyword argument `table` is a list of dictionaries, each dictionary should have a `table`"
f" and `query` key, but only dictionary has keys {table[0].keys()} `table` and `query` keys."
)
elif Dataset is not None and isinstance(table, Dataset) or isinstance(table, types.GeneratorType):
return table
else:
raise ValueError(
"Invalid input. Keyword argument `table` should be either of type `dict` or `list`, but "
f"is {type(table)})"
)
else:
tqa_pipeline_inputs = [{"table": table, "query": query}]
for tqa_pipeline_input in tqa_pipeline_inputs:
if not isinstance(tqa_pipeline_input["table"], pd.DataFrame):
if tqa_pipeline_input["table"] is None:
raise ValueError("Table cannot be None.")
tqa_pipeline_input["table"] = pd.DataFrame(tqa_pipeline_input["table"])
return tqa_pipeline_inputs
@add_end_docstrings(PIPELINE_INIT_ARGS)
class TableQuestionAnsweringPipeline(Pipeline):
"""
Table Question Answering pipeline using a `ModelForTableQuestionAnswering`. This pipeline is only available in
PyTorch.
Example:
```python
>>> from transformers import pipeline
>>> oracle = pipeline(model="google/tapas-base-finetuned-wtq")
>>> table = {
... "Repository": ["Transformers", "Datasets", "Tokenizers"],
... "Stars": ["36542", "4512", "3934"],
... "Contributors": ["651", "77", "34"],
... "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
... }
>>> oracle(query="How many stars does the transformers repository have?", table=table)
{'answer': 'AVERAGE > 36542', 'coordinates': [(0, 1)], 'cells': ['36542'], 'aggregator': 'AVERAGE'}
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This tabular question answering pipeline can currently be loaded from [`pipeline`] using the following task
identifier: `"table-question-answering"`.
The models that this pipeline can use are models that have been fine-tuned on a tabular question answering task.
See the up-to-date list of available models on
[huggingface.co/models](https://huggingface.co./models?filter=table-question-answering).
"""
default_input_names = "table,query"
def __init__(self, args_parser=TableQuestionAnsweringArgumentHandler(), *args, **kwargs):
super().__init__(*args, **kwargs)
self._args_parser = args_parser
if self.framework == "tf":
mapping = TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES.copy()
mapping.update(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES)
else:
mapping = MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES.copy()
mapping.update(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES)
self.check_model_type(mapping)
self.aggregate = bool(getattr(self.model.config, "aggregation_labels", None)) and bool(
getattr(self.model.config, "num_aggregation_labels", None)
)
self.type = "tapas" if hasattr(self.model.config, "aggregation_labels") else None
def batch_inference(self, **inputs):
return self.model(**inputs)
def sequential_inference(self, **inputs):
"""
Inference used for models that need to process sequences in a sequential fashion, like the SQA models which
handle conversational query related to a table.
"""
if self.framework == "pt":
all_logits = []
all_aggregations = []
prev_answers = None
batch_size = inputs["input_ids"].shape[0]
input_ids = inputs["input_ids"].to(self.device)
attention_mask = inputs["attention_mask"].to(self.device)
token_type_ids = inputs["token_type_ids"].to(self.device)
token_type_ids_example = None
for index in range(batch_size):
# If sequences have already been processed, the token type IDs will be created according to the previous
# answer.
if prev_answers is not None:
prev_labels_example = token_type_ids_example[:, 3] # shape (seq_len,)
model_labels = np.zeros_like(prev_labels_example.cpu().numpy()) # shape (seq_len,)
token_type_ids_example = token_type_ids[index] # shape (seq_len, 7)
for i in range(model_labels.shape[0]):
segment_id = token_type_ids_example[:, 0].tolist()[i]
col_id = token_type_ids_example[:, 1].tolist()[i] - 1
row_id = token_type_ids_example[:, 2].tolist()[i] - 1
if row_id >= 0 and col_id >= 0 and segment_id == 1:
model_labels[i] = int(prev_answers[(col_id, row_id)])
token_type_ids_example[:, 3] = torch.from_numpy(model_labels).type(torch.long).to(self.device)
input_ids_example = input_ids[index]
attention_mask_example = attention_mask[index] # shape (seq_len,)
token_type_ids_example = token_type_ids[index] # shape (seq_len, 7)
outputs = self.model(
input_ids=input_ids_example.unsqueeze(0),
attention_mask=attention_mask_example.unsqueeze(0),
token_type_ids=token_type_ids_example.unsqueeze(0),
)
logits = outputs.logits
if self.aggregate:
all_aggregations.append(outputs.logits_aggregation)
all_logits.append(logits)
dist_per_token = torch.distributions.Bernoulli(logits=logits)
probabilities = dist_per_token.probs * attention_mask_example.type(torch.float32).to(
dist_per_token.probs.device
)
coords_to_probs = collections.defaultdict(list)
for i, p in enumerate(probabilities.squeeze().tolist()):
segment_id = token_type_ids_example[:, 0].tolist()[i]
col = token_type_ids_example[:, 1].tolist()[i] - 1
row = token_type_ids_example[:, 2].tolist()[i] - 1
if col >= 0 and row >= 0 and segment_id == 1:
coords_to_probs[(col, row)].append(p)
prev_answers = {key: np.array(coords_to_probs[key]).mean() > 0.5 for key in coords_to_probs}
logits_batch = torch.cat(tuple(all_logits), 0)
return (logits_batch,) if not self.aggregate else (logits_batch, torch.cat(tuple(all_aggregations), 0))
else:
all_logits = []
all_aggregations = []
prev_answers = None
batch_size = inputs["input_ids"].shape[0]
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
token_type_ids = inputs["token_type_ids"].numpy()
token_type_ids_example = None
for index in range(batch_size):
# If sequences have already been processed, the token type IDs will be created according to the previous
# answer.
if prev_answers is not None:
prev_labels_example = token_type_ids_example[:, 3] # shape (seq_len,)
model_labels = np.zeros_like(prev_labels_example, dtype=np.int32) # shape (seq_len,)
token_type_ids_example = token_type_ids[index] # shape (seq_len, 7)
for i in range(model_labels.shape[0]):
segment_id = token_type_ids_example[:, 0].tolist()[i]
col_id = token_type_ids_example[:, 1].tolist()[i] - 1
row_id = token_type_ids_example[:, 2].tolist()[i] - 1
if row_id >= 0 and col_id >= 0 and segment_id == 1:
model_labels[i] = int(prev_answers[(col_id, row_id)])
token_type_ids_example[:, 3] = model_labels
input_ids_example = input_ids[index]
attention_mask_example = attention_mask[index] # shape (seq_len,)
token_type_ids_example = token_type_ids[index] # shape (seq_len, 7)
outputs = self.model(
input_ids=np.expand_dims(input_ids_example, axis=0),
attention_mask=np.expand_dims(attention_mask_example, axis=0),
token_type_ids=np.expand_dims(token_type_ids_example, axis=0),
)
logits = outputs.logits
if self.aggregate:
all_aggregations.append(outputs.logits_aggregation)
all_logits.append(logits)
dist_per_token = tfp.distributions.Bernoulli(logits=logits)
probabilities = dist_per_token.probs_parameter() * tf.cast(attention_mask_example, tf.float32)
coords_to_probs = collections.defaultdict(list)
token_type_ids_example = token_type_ids_example
for i, p in enumerate(tf.squeeze(probabilities).numpy().tolist()):
segment_id = token_type_ids_example[:, 0].tolist()[i]
col = token_type_ids_example[:, 1].tolist()[i] - 1
row = token_type_ids_example[:, 2].tolist()[i] - 1
if col >= 0 and row >= 0 and segment_id == 1:
coords_to_probs[(col, row)].append(p)
prev_answers = {key: np.array(coords_to_probs[key]).mean() > 0.5 for key in coords_to_probs}
logits_batch = tf.concat(tuple(all_logits), 0)
return (logits_batch,) if not self.aggregate else (logits_batch, tf.concat(tuple(all_aggregations), 0))
def __call__(self, *args, **kwargs):
r"""
Answers queries according to a table. The pipeline accepts several types of inputs which are detailed below:
- `pipeline(table, query)`
- `pipeline(table, [query])`
- `pipeline(table=table, query=query)`
- `pipeline(table=table, query=[query])`
- `pipeline({"table": table, "query": query})`
- `pipeline({"table": table, "query": [query]})`
- `pipeline([{"table": table, "query": query}, {"table": table, "query": query}])`
The `table` argument should be a dict or a DataFrame built from that dict, containing the whole table:
Example:
```python
data = {
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
"age": ["56", "45", "59"],
"number of movies": ["87", "53", "69"],
"date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
}
```
This dictionary can be passed in as such, or can be converted to a pandas DataFrame:
Example:
```python
import pandas as pd
table = pd.DataFrame.from_dict(data)
```
Args:
table (`pd.DataFrame` or `Dict`):
Pandas DataFrame or dictionary that will be converted to a DataFrame containing all the table values.
See above for an example of dictionary.
query (`str` or `List[str]`):
Query or list of queries that will be sent to the model alongside the table.
sequential (`bool`, *optional*, defaults to `False`):
Whether to do inference sequentially or as a batch. Batching is faster, but models like SQA require the
inference to be done sequentially to extract relations within sequences, given their conversational
nature.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`TapasTruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument `max_length`
or to the maximum acceptable input length for the model if that argument is not provided. This will
truncate row by row, removing rows from the table.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
Return:
A dictionary or a list of dictionaries containing results: Each result is a dictionary with the following
keys:
- **answer** (`str`) -- The answer of the query given the table. If there is an aggregator, the answer will
be preceded by `AGGREGATOR >`.
- **coordinates** (`List[Tuple[int, int]]`) -- Coordinates of the cells of the answers.
- **cells** (`List[str]`) -- List of strings made up of the answer cell values.
- **aggregator** (`str`) -- If the model has an aggregator, this returns the aggregator.
"""
pipeline_inputs = self._args_parser(*args, **kwargs)
results = super().__call__(pipeline_inputs, **kwargs)
if len(results) == 1:
return results[0]
return results
def _sanitize_parameters(self, sequential=None, padding=None, truncation=None, **kwargs):
preprocess_params = {}
if padding is not None:
preprocess_params["padding"] = padding
if truncation is not None:
preprocess_params["truncation"] = truncation
forward_params = {}
if sequential is not None:
forward_params["sequential"] = sequential
return preprocess_params, forward_params, {}
def preprocess(self, pipeline_input, sequential=None, padding=True, truncation=None):
if truncation is None:
if self.type == "tapas":
truncation = "drop_rows_to_fit"
else:
truncation = "do_not_truncate"
table, query = pipeline_input["table"], pipeline_input["query"]
if table.empty:
raise ValueError("table is empty")
if query is None or query == "":
raise ValueError("query is empty")
inputs = self.tokenizer(table, query, return_tensors=self.framework, truncation=truncation, padding=padding)
inputs["table"] = table
return inputs
def _forward(self, model_inputs, sequential=False):
table = model_inputs.pop("table")
if self.type == "tapas":
if sequential:
outputs = self.sequential_inference(**model_inputs)
else:
outputs = self.batch_inference(**model_inputs)
else:
outputs = self.model.generate(**model_inputs)
model_outputs = {"model_inputs": model_inputs, "table": table, "outputs": outputs}
return model_outputs
def postprocess(self, model_outputs):
inputs = model_outputs["model_inputs"]
table = model_outputs["table"]
outputs = model_outputs["outputs"]
if self.type == "tapas":
if self.aggregate:
logits, logits_agg = outputs[:2]
predictions = self.tokenizer.convert_logits_to_predictions(inputs, logits, logits_agg)
answer_coordinates_batch, agg_predictions = predictions
aggregators = {i: self.model.config.aggregation_labels[pred] for i, pred in enumerate(agg_predictions)}
no_agg_label_index = self.model.config.no_aggregation_label_index
aggregators_prefix = {
i: aggregators[i] + " > " for i, pred in enumerate(agg_predictions) if pred != no_agg_label_index
}
else:
logits = outputs[0]
predictions = self.tokenizer.convert_logits_to_predictions(inputs, logits)
answer_coordinates_batch = predictions[0]
aggregators = {}
aggregators_prefix = {}
answers = []
for index, coordinates in enumerate(answer_coordinates_batch):
cells = [table.iat[coordinate] for coordinate in coordinates]
aggregator = aggregators.get(index, "")
aggregator_prefix = aggregators_prefix.get(index, "")
answer = {
"answer": aggregator_prefix + ", ".join(cells),
"coordinates": coordinates,
"cells": [table.iat[coordinate] for coordinate in coordinates],
}
if aggregator:
answer["aggregator"] = aggregator
answers.append(answer)
if len(answer) == 0:
raise PipelineException("Empty answer")
else:
answers = [{"answer": answer} for answer in self.tokenizer.batch_decode(outputs, skip_special_tokens=True)]
return answers if len(answers) > 1 else answers[0]