File size: 15,379 Bytes
f8f5cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# coding=utf-8
# Copyright 2020 Hugging Face
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
import time
from typing import Optional

import IPython.display as disp

from ..trainer_callback import TrainerCallback
from ..trainer_utils import IntervalStrategy, has_length


def format_time(t):
    "Format `t` (in seconds) to (h):mm:ss"
    t = int(t)
    h, m, s = t // 3600, (t // 60) % 60, t % 60
    return f"{h}:{m:02d}:{s:02d}" if h != 0 else f"{m:02d}:{s:02d}"


def html_progress_bar(value, total, prefix, label, width=300):
    # docstyle-ignore
    return f"""
    <div>
      {prefix}
      <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>
      {label}
    </div>
    """


def text_to_html_table(items):
    "Put the texts in `items` in an HTML table."
    html_code = """<table border="1" class="dataframe">\n"""
    html_code += """  <thead>\n <tr style="text-align: left;">\n"""
    for i in items[0]:
        html_code += f"      <th>{i}</th>\n"
    html_code += "    </tr>\n  </thead>\n  <tbody>\n"
    for line in items[1:]:
        html_code += "    <tr>\n"
        for elt in line:
            elt = f"{elt:.6f}" if isinstance(elt, float) else str(elt)
            html_code += f"      <td>{elt}</td>\n"
        html_code += "    </tr>\n"
    html_code += "  </tbody>\n</table><p>"
    return html_code


class NotebookProgressBar:
    """
    A progress par for display in a notebook.

    Class attributes (overridden by derived classes)

        - **warmup** (`int`) -- The number of iterations to do at the beginning while ignoring `update_every`.
        - **update_every** (`float`) -- Since calling the time takes some time, we only do it every presumed
          `update_every` seconds. The progress bar uses the average time passed up until now to guess the next value
          for which it will call the update.

    Args:
        total (`int`):
            The total number of iterations to reach.
        prefix (`str`, *optional*):
            A prefix to add before the progress bar.
        leave (`bool`, *optional*, defaults to `True`):
            Whether or not to leave the progress bar once it's completed. You can always call the
            [`~utils.notebook.NotebookProgressBar.close`] method to make the bar disappear.
        parent ([`~notebook.NotebookTrainingTracker`], *optional*):
            A parent object (like [`~utils.notebook.NotebookTrainingTracker`]) that spawns progress bars and handle
            their display. If set, the object passed must have a `display()` method.
        width (`int`, *optional*, defaults to 300):
            The width (in pixels) that the bar will take.

    Example:

    ```python
    import time

    pbar = NotebookProgressBar(100)
    for val in range(100):
        pbar.update(val)
        time.sleep(0.07)
    pbar.update(100)
    ```"""

    warmup = 5
    update_every = 0.2

    def __init__(
        self,
        total: int,
        prefix: Optional[str] = None,
        leave: bool = True,
        parent: Optional["NotebookTrainingTracker"] = None,
        width: int = 300,
    ):
        self.total = total
        self.prefix = "" if prefix is None else prefix
        self.leave = leave
        self.parent = parent
        self.width = width
        self.last_value = None
        self.comment = None
        self.output = None

    def update(self, value: int, force_update: bool = False, comment: str = None):
        """
        The main method to update the progress bar to `value`.

        Args:
            value (`int`):
                The value to use. Must be between 0 and `total`.
            force_update (`bool`, *optional*, defaults to `False`):
                Whether or not to force and update of the internal state and display (by default, the bar will wait for
                `value` to reach the value it predicted corresponds to a time of more than the `update_every` attribute
                since the last update to avoid adding boilerplate).
            comment (`str`, *optional*):
                A comment to add on the left of the progress bar.
        """
        self.value = value
        if comment is not None:
            self.comment = comment
        if self.last_value is None:
            self.start_time = self.last_time = time.time()
            self.start_value = self.last_value = value
            self.elapsed_time = self.predicted_remaining = None
            self.first_calls = self.warmup
            self.wait_for = 1
            self.update_bar(value)
        elif value <= self.last_value and not force_update:
            return
        elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for, self.total):
            if self.first_calls > 0:
                self.first_calls -= 1
            current_time = time.time()
            self.elapsed_time = current_time - self.start_time
            # We could have value = self.start_value if the update is called twixe with the same start value.
            if value > self.start_value:
                self.average_time_per_item = self.elapsed_time / (value - self.start_value)
            else:
                self.average_time_per_item = None
            if value >= self.total:
                value = self.total
                self.predicted_remaining = None
                if not self.leave:
                    self.close()
            elif self.average_time_per_item is not None:
                self.predicted_remaining = self.average_time_per_item * (self.total - value)
            self.update_bar(value)
            self.last_value = value
            self.last_time = current_time
            if self.average_time_per_item is None:
                self.wait_for = 1
            else:
                self.wait_for = max(int(self.update_every / self.average_time_per_item), 1)

    def update_bar(self, value, comment=None):
        spaced_value = " " * (len(str(self.total)) - len(str(value))) + str(value)
        if self.elapsed_time is None:
            self.label = f"[{spaced_value}/{self.total} : < :"
        elif self.predicted_remaining is None:
            self.label = f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)}"
        else:
            self.label = (
                f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <"
                f" {format_time(self.predicted_remaining)}"
            )
            self.label += f", {1/self.average_time_per_item:.2f} it/s"
        self.label += "]" if self.comment is None or len(self.comment) == 0 else f", {self.comment}]"
        self.display()

    def display(self):
        self.html_code = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width)
        if self.parent is not None:
            # If this is a child bar, the parent will take care of the display.
            self.parent.display()
            return
        if self.output is None:
            self.output = disp.display(disp.HTML(self.html_code), display_id=True)
        else:
            self.output.update(disp.HTML(self.html_code))

    def close(self):
        "Closes the progress bar."
        if self.parent is None and self.output is not None:
            self.output.update(disp.HTML(""))


class NotebookTrainingTracker(NotebookProgressBar):
    """
    An object tracking the updates of an ongoing training with progress bars and a nice table reporting metrics.

    Args:
        num_steps (`int`): The number of steps during training. column_names (`List[str]`, *optional*):
            The list of column names for the metrics table (will be inferred from the first call to
            [`~utils.notebook.NotebookTrainingTracker.write_line`] if not set).
    """

    def __init__(self, num_steps, column_names=None):
        super().__init__(num_steps)
        self.inner_table = None if column_names is None else [column_names]
        self.child_bar = None

    def display(self):
        self.html_code = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width)
        if self.inner_table is not None:
            self.html_code += text_to_html_table(self.inner_table)
        if self.child_bar is not None:
            self.html_code += self.child_bar.html_code
        if self.output is None:
            self.output = disp.display(disp.HTML(self.html_code), display_id=True)
        else:
            self.output.update(disp.HTML(self.html_code))

    def write_line(self, values):
        """
        Write the values in the inner table.

        Args:
            values (`Dict[str, float]`): The values to display.
        """
        if self.inner_table is None:
            self.inner_table = [list(values.keys()), list(values.values())]
        else:
            columns = self.inner_table[0]
            for key in values.keys():
                if key not in columns:
                    columns.append(key)
            self.inner_table[0] = columns
            if len(self.inner_table) > 1:
                last_values = self.inner_table[-1]
                first_column = self.inner_table[0][0]
                if last_values[0] != values[first_column]:
                    # write new line
                    self.inner_table.append([values[c] if c in values else "No Log" for c in columns])
                else:
                    # update last line
                    new_values = values
                    for c in columns:
                        if c not in new_values.keys():
                            new_values[c] = last_values[columns.index(c)]
                    self.inner_table[-1] = [new_values[c] for c in columns]
            else:
                self.inner_table.append([values[c] for c in columns])

    def add_child(self, total, prefix=None, width=300):
        """
        Add a child progress bar displayed under the table of metrics. The child progress bar is returned (so it can be
        easily updated).

        Args:
            total (`int`): The number of iterations for the child progress bar.
            prefix (`str`, *optional*): A prefix to write on the left of the progress bar.
            width (`int`, *optional*, defaults to 300): The width (in pixels) of the progress bar.
        """
        self.child_bar = NotebookProgressBar(total, prefix=prefix, parent=self, width=width)
        return self.child_bar

    def remove_child(self):
        """
        Closes the child progress bar.
        """
        self.child_bar = None
        self.display()


class NotebookProgressCallback(TrainerCallback):
    """
    A [`TrainerCallback`] that displays the progress of training or evaluation, optimized for Jupyter Notebooks or
    Google colab.
    """

    def __init__(self):
        self.training_tracker = None
        self.prediction_bar = None
        self._force_next_update = False

    def on_train_begin(self, args, state, control, **kwargs):
        self.first_column = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step"
        self.training_loss = 0
        self.last_log = 0
        column_names = [self.first_column] + ["Training Loss"]
        if args.evaluation_strategy != IntervalStrategy.NO:
            column_names.append("Validation Loss")
        self.training_tracker = NotebookTrainingTracker(state.max_steps, column_names)

    def on_step_end(self, args, state, control, **kwargs):
        epoch = int(state.epoch) if int(state.epoch) == state.epoch else f"{state.epoch:.2f}"
        self.training_tracker.update(
            state.global_step + 1,
            comment=f"Epoch {epoch}/{state.num_train_epochs}",
            force_update=self._force_next_update,
        )
        self._force_next_update = False

    def on_prediction_step(self, args, state, control, eval_dataloader=None, **kwargs):
        if not has_length(eval_dataloader):
            return
        if self.prediction_bar is None:
            if self.training_tracker is not None:
                self.prediction_bar = self.training_tracker.add_child(len(eval_dataloader))
            else:
                self.prediction_bar = NotebookProgressBar(len(eval_dataloader))
            self.prediction_bar.update(1)
        else:
            self.prediction_bar.update(self.prediction_bar.value + 1)

    def on_predict(self, args, state, control, **kwargs):
        if self.prediction_bar is not None:
            self.prediction_bar.close()
        self.prediction_bar = None

    def on_log(self, args, state, control, logs=None, **kwargs):
        # Only for when there is no evaluation
        if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs:
            values = {"Training Loss": logs["loss"]}
            # First column is necessarily Step sine we're not in epoch eval strategy
            values["Step"] = state.global_step
            self.training_tracker.write_line(values)

    def on_evaluate(self, args, state, control, metrics=None, **kwargs):
        if self.training_tracker is not None:
            values = {"Training Loss": "No log", "Validation Loss": "No log"}
            for log in reversed(state.log_history):
                if "loss" in log:
                    values["Training Loss"] = log["loss"]
                    break

            if self.first_column == "Epoch":
                values["Epoch"] = int(state.epoch)
            else:
                values["Step"] = state.global_step
            metric_key_prefix = "eval"
            for k in metrics:
                if k.endswith("_loss"):
                    metric_key_prefix = re.sub(r"\_loss$", "", k)
            _ = metrics.pop("total_flos", None)
            _ = metrics.pop("epoch", None)
            _ = metrics.pop(f"{metric_key_prefix}_runtime", None)
            _ = metrics.pop(f"{metric_key_prefix}_samples_per_second", None)
            _ = metrics.pop(f"{metric_key_prefix}_steps_per_second", None)
            _ = metrics.pop(f"{metric_key_prefix}_jit_compilation_time", None)
            for k, v in metrics.items():
                splits = k.split("_")
                name = " ".join([part.capitalize() for part in splits[1:]])
                if name == "Loss":
                    # Single dataset
                    name = "Validation Loss"
                values[name] = v
            self.training_tracker.write_line(values)
            self.training_tracker.remove_child()
            self.prediction_bar = None
            # Evaluation takes a long time so we should force the next update.
            self._force_next_update = True

    def on_train_end(self, args, state, control, **kwargs):
        self.training_tracker.update(
            state.global_step, comment=f"Epoch {int(state.epoch)}/{state.num_train_epochs}", force_update=True
        )
        self.training_tracker = None