Spaces:
Runtime error
Runtime error
File size: 15,379 Bytes
f8f5cdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
# coding=utf-8
# Copyright 2020 Hugging Face
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
import time
from typing import Optional
import IPython.display as disp
from ..trainer_callback import TrainerCallback
from ..trainer_utils import IntervalStrategy, has_length
def format_time(t):
"Format `t` (in seconds) to (h):mm:ss"
t = int(t)
h, m, s = t // 3600, (t // 60) % 60, t % 60
return f"{h}:{m:02d}:{s:02d}" if h != 0 else f"{m:02d}:{s:02d}"
def html_progress_bar(value, total, prefix, label, width=300):
# docstyle-ignore
return f"""
<div>
{prefix}
<progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>
{label}
</div>
"""
def text_to_html_table(items):
"Put the texts in `items` in an HTML table."
html_code = """<table border="1" class="dataframe">\n"""
html_code += """ <thead>\n <tr style="text-align: left;">\n"""
for i in items[0]:
html_code += f" <th>{i}</th>\n"
html_code += " </tr>\n </thead>\n <tbody>\n"
for line in items[1:]:
html_code += " <tr>\n"
for elt in line:
elt = f"{elt:.6f}" if isinstance(elt, float) else str(elt)
html_code += f" <td>{elt}</td>\n"
html_code += " </tr>\n"
html_code += " </tbody>\n</table><p>"
return html_code
class NotebookProgressBar:
"""
A progress par for display in a notebook.
Class attributes (overridden by derived classes)
- **warmup** (`int`) -- The number of iterations to do at the beginning while ignoring `update_every`.
- **update_every** (`float`) -- Since calling the time takes some time, we only do it every presumed
`update_every` seconds. The progress bar uses the average time passed up until now to guess the next value
for which it will call the update.
Args:
total (`int`):
The total number of iterations to reach.
prefix (`str`, *optional*):
A prefix to add before the progress bar.
leave (`bool`, *optional*, defaults to `True`):
Whether or not to leave the progress bar once it's completed. You can always call the
[`~utils.notebook.NotebookProgressBar.close`] method to make the bar disappear.
parent ([`~notebook.NotebookTrainingTracker`], *optional*):
A parent object (like [`~utils.notebook.NotebookTrainingTracker`]) that spawns progress bars and handle
their display. If set, the object passed must have a `display()` method.
width (`int`, *optional*, defaults to 300):
The width (in pixels) that the bar will take.
Example:
```python
import time
pbar = NotebookProgressBar(100)
for val in range(100):
pbar.update(val)
time.sleep(0.07)
pbar.update(100)
```"""
warmup = 5
update_every = 0.2
def __init__(
self,
total: int,
prefix: Optional[str] = None,
leave: bool = True,
parent: Optional["NotebookTrainingTracker"] = None,
width: int = 300,
):
self.total = total
self.prefix = "" if prefix is None else prefix
self.leave = leave
self.parent = parent
self.width = width
self.last_value = None
self.comment = None
self.output = None
def update(self, value: int, force_update: bool = False, comment: str = None):
"""
The main method to update the progress bar to `value`.
Args:
value (`int`):
The value to use. Must be between 0 and `total`.
force_update (`bool`, *optional*, defaults to `False`):
Whether or not to force and update of the internal state and display (by default, the bar will wait for
`value` to reach the value it predicted corresponds to a time of more than the `update_every` attribute
since the last update to avoid adding boilerplate).
comment (`str`, *optional*):
A comment to add on the left of the progress bar.
"""
self.value = value
if comment is not None:
self.comment = comment
if self.last_value is None:
self.start_time = self.last_time = time.time()
self.start_value = self.last_value = value
self.elapsed_time = self.predicted_remaining = None
self.first_calls = self.warmup
self.wait_for = 1
self.update_bar(value)
elif value <= self.last_value and not force_update:
return
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for, self.total):
if self.first_calls > 0:
self.first_calls -= 1
current_time = time.time()
self.elapsed_time = current_time - self.start_time
# We could have value = self.start_value if the update is called twixe with the same start value.
if value > self.start_value:
self.average_time_per_item = self.elapsed_time / (value - self.start_value)
else:
self.average_time_per_item = None
if value >= self.total:
value = self.total
self.predicted_remaining = None
if not self.leave:
self.close()
elif self.average_time_per_item is not None:
self.predicted_remaining = self.average_time_per_item * (self.total - value)
self.update_bar(value)
self.last_value = value
self.last_time = current_time
if self.average_time_per_item is None:
self.wait_for = 1
else:
self.wait_for = max(int(self.update_every / self.average_time_per_item), 1)
def update_bar(self, value, comment=None):
spaced_value = " " * (len(str(self.total)) - len(str(value))) + str(value)
if self.elapsed_time is None:
self.label = f"[{spaced_value}/{self.total} : < :"
elif self.predicted_remaining is None:
self.label = f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)}"
else:
self.label = (
f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <"
f" {format_time(self.predicted_remaining)}"
)
self.label += f", {1/self.average_time_per_item:.2f} it/s"
self.label += "]" if self.comment is None or len(self.comment) == 0 else f", {self.comment}]"
self.display()
def display(self):
self.html_code = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width)
if self.parent is not None:
# If this is a child bar, the parent will take care of the display.
self.parent.display()
return
if self.output is None:
self.output = disp.display(disp.HTML(self.html_code), display_id=True)
else:
self.output.update(disp.HTML(self.html_code))
def close(self):
"Closes the progress bar."
if self.parent is None and self.output is not None:
self.output.update(disp.HTML(""))
class NotebookTrainingTracker(NotebookProgressBar):
"""
An object tracking the updates of an ongoing training with progress bars and a nice table reporting metrics.
Args:
num_steps (`int`): The number of steps during training. column_names (`List[str]`, *optional*):
The list of column names for the metrics table (will be inferred from the first call to
[`~utils.notebook.NotebookTrainingTracker.write_line`] if not set).
"""
def __init__(self, num_steps, column_names=None):
super().__init__(num_steps)
self.inner_table = None if column_names is None else [column_names]
self.child_bar = None
def display(self):
self.html_code = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width)
if self.inner_table is not None:
self.html_code += text_to_html_table(self.inner_table)
if self.child_bar is not None:
self.html_code += self.child_bar.html_code
if self.output is None:
self.output = disp.display(disp.HTML(self.html_code), display_id=True)
else:
self.output.update(disp.HTML(self.html_code))
def write_line(self, values):
"""
Write the values in the inner table.
Args:
values (`Dict[str, float]`): The values to display.
"""
if self.inner_table is None:
self.inner_table = [list(values.keys()), list(values.values())]
else:
columns = self.inner_table[0]
for key in values.keys():
if key not in columns:
columns.append(key)
self.inner_table[0] = columns
if len(self.inner_table) > 1:
last_values = self.inner_table[-1]
first_column = self.inner_table[0][0]
if last_values[0] != values[first_column]:
# write new line
self.inner_table.append([values[c] if c in values else "No Log" for c in columns])
else:
# update last line
new_values = values
for c in columns:
if c not in new_values.keys():
new_values[c] = last_values[columns.index(c)]
self.inner_table[-1] = [new_values[c] for c in columns]
else:
self.inner_table.append([values[c] for c in columns])
def add_child(self, total, prefix=None, width=300):
"""
Add a child progress bar displayed under the table of metrics. The child progress bar is returned (so it can be
easily updated).
Args:
total (`int`): The number of iterations for the child progress bar.
prefix (`str`, *optional*): A prefix to write on the left of the progress bar.
width (`int`, *optional*, defaults to 300): The width (in pixels) of the progress bar.
"""
self.child_bar = NotebookProgressBar(total, prefix=prefix, parent=self, width=width)
return self.child_bar
def remove_child(self):
"""
Closes the child progress bar.
"""
self.child_bar = None
self.display()
class NotebookProgressCallback(TrainerCallback):
"""
A [`TrainerCallback`] that displays the progress of training or evaluation, optimized for Jupyter Notebooks or
Google colab.
"""
def __init__(self):
self.training_tracker = None
self.prediction_bar = None
self._force_next_update = False
def on_train_begin(self, args, state, control, **kwargs):
self.first_column = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step"
self.training_loss = 0
self.last_log = 0
column_names = [self.first_column] + ["Training Loss"]
if args.evaluation_strategy != IntervalStrategy.NO:
column_names.append("Validation Loss")
self.training_tracker = NotebookTrainingTracker(state.max_steps, column_names)
def on_step_end(self, args, state, control, **kwargs):
epoch = int(state.epoch) if int(state.epoch) == state.epoch else f"{state.epoch:.2f}"
self.training_tracker.update(
state.global_step + 1,
comment=f"Epoch {epoch}/{state.num_train_epochs}",
force_update=self._force_next_update,
)
self._force_next_update = False
def on_prediction_step(self, args, state, control, eval_dataloader=None, **kwargs):
if not has_length(eval_dataloader):
return
if self.prediction_bar is None:
if self.training_tracker is not None:
self.prediction_bar = self.training_tracker.add_child(len(eval_dataloader))
else:
self.prediction_bar = NotebookProgressBar(len(eval_dataloader))
self.prediction_bar.update(1)
else:
self.prediction_bar.update(self.prediction_bar.value + 1)
def on_predict(self, args, state, control, **kwargs):
if self.prediction_bar is not None:
self.prediction_bar.close()
self.prediction_bar = None
def on_log(self, args, state, control, logs=None, **kwargs):
# Only for when there is no evaluation
if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs:
values = {"Training Loss": logs["loss"]}
# First column is necessarily Step sine we're not in epoch eval strategy
values["Step"] = state.global_step
self.training_tracker.write_line(values)
def on_evaluate(self, args, state, control, metrics=None, **kwargs):
if self.training_tracker is not None:
values = {"Training Loss": "No log", "Validation Loss": "No log"}
for log in reversed(state.log_history):
if "loss" in log:
values["Training Loss"] = log["loss"]
break
if self.first_column == "Epoch":
values["Epoch"] = int(state.epoch)
else:
values["Step"] = state.global_step
metric_key_prefix = "eval"
for k in metrics:
if k.endswith("_loss"):
metric_key_prefix = re.sub(r"\_loss$", "", k)
_ = metrics.pop("total_flos", None)
_ = metrics.pop("epoch", None)
_ = metrics.pop(f"{metric_key_prefix}_runtime", None)
_ = metrics.pop(f"{metric_key_prefix}_samples_per_second", None)
_ = metrics.pop(f"{metric_key_prefix}_steps_per_second", None)
_ = metrics.pop(f"{metric_key_prefix}_jit_compilation_time", None)
for k, v in metrics.items():
splits = k.split("_")
name = " ".join([part.capitalize() for part in splits[1:]])
if name == "Loss":
# Single dataset
name = "Validation Loss"
values[name] = v
self.training_tracker.write_line(values)
self.training_tracker.remove_child()
self.prediction_bar = None
# Evaluation takes a long time so we should force the next update.
self._force_next_update = True
def on_train_end(self, args, state, control, **kwargs):
self.training_tracker.update(
state.global_step, comment=f"Epoch {int(state.epoch)}/{state.num_train_epochs}", force_update=True
)
self.training_tracker = None
|