File size: 28,943 Bytes
f8f5cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
# coding=utf-8
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch CvT model."""


import collections.abc
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import ImageClassifierOutputWithNoAttention, ModelOutput
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import logging
from .configuration_cvt import CvtConfig


logger = logging.get_logger(__name__)

# General docstring
_CONFIG_FOR_DOC = "CvtConfig"

# Base docstring
_CHECKPOINT_FOR_DOC = "microsoft/cvt-13"
_EXPECTED_OUTPUT_SHAPE = [1, 384, 14, 14]

# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "microsoft/cvt-13"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"


CVT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "microsoft/cvt-13",
    "microsoft/cvt-13-384",
    "microsoft/cvt-13-384-22k",
    "microsoft/cvt-21",
    "microsoft/cvt-21-384",
    "microsoft/cvt-21-384-22k",
    # See all Cvt models at https://huggingface.co./models?filter=cvt
]


@dataclass
class BaseModelOutputWithCLSToken(ModelOutput):
    """
    Base class for model's outputs, with potential hidden states and attentions.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        cls_token_value (`torch.FloatTensor` of shape `(batch_size, 1, hidden_size)`):
            Classification token at the output of the last layer of the model.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
            plus the initial embedding outputs.
    """

    last_hidden_state: torch.FloatTensor = None
    cls_token_value: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None


# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
    however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
    layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
    argument.
    """
    if drop_prob == 0.0 or not training:
        return input
    keep_prob = 1 - drop_prob
    shape = (input.shape[0],) + (1,) * (input.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
    random_tensor.floor_()  # binarize
    output = input.div(keep_prob) * random_tensor
    return output


# Copied from transformers.models.beit.modeling_beit.BeitDropPath
class CvtDropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob: Optional[float] = None) -> None:
        super().__init__()
        self.drop_prob = drop_prob

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        return drop_path(hidden_states, self.drop_prob, self.training)

    def extra_repr(self) -> str:
        return "p={}".format(self.drop_prob)


class CvtEmbeddings(nn.Module):
    """
    Construct the CvT embeddings.
    """

    def __init__(self, patch_size, num_channels, embed_dim, stride, padding, dropout_rate):
        super().__init__()
        self.convolution_embeddings = CvtConvEmbeddings(
            patch_size=patch_size, num_channels=num_channels, embed_dim=embed_dim, stride=stride, padding=padding
        )
        self.dropout = nn.Dropout(dropout_rate)

    def forward(self, pixel_values):
        hidden_state = self.convolution_embeddings(pixel_values)
        hidden_state = self.dropout(hidden_state)
        return hidden_state


class CvtConvEmbeddings(nn.Module):
    """
    Image to Conv Embedding.
    """

    def __init__(self, patch_size, num_channels, embed_dim, stride, padding):
        super().__init__()
        patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
        self.patch_size = patch_size
        self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=stride, padding=padding)
        self.normalization = nn.LayerNorm(embed_dim)

    def forward(self, pixel_values):
        pixel_values = self.projection(pixel_values)
        batch_size, num_channels, height, width = pixel_values.shape
        hidden_size = height * width
        # rearrange "b c h w -> b (h w) c"
        pixel_values = pixel_values.view(batch_size, num_channels, hidden_size).permute(0, 2, 1)
        if self.normalization:
            pixel_values = self.normalization(pixel_values)
        # rearrange "b (h w) c" -> b c h w"
        pixel_values = pixel_values.permute(0, 2, 1).view(batch_size, num_channels, height, width)
        return pixel_values


class CvtSelfAttentionConvProjection(nn.Module):
    def __init__(self, embed_dim, kernel_size, padding, stride):
        super().__init__()
        self.convolution = nn.Conv2d(
            embed_dim,
            embed_dim,
            kernel_size=kernel_size,
            padding=padding,
            stride=stride,
            bias=False,
            groups=embed_dim,
        )
        self.normalization = nn.BatchNorm2d(embed_dim)

    def forward(self, hidden_state):
        hidden_state = self.convolution(hidden_state)
        hidden_state = self.normalization(hidden_state)
        return hidden_state


class CvtSelfAttentionLinearProjection(nn.Module):
    def forward(self, hidden_state):
        batch_size, num_channels, height, width = hidden_state.shape
        hidden_size = height * width
        # rearrange " b c h w -> b (h w) c"
        hidden_state = hidden_state.view(batch_size, num_channels, hidden_size).permute(0, 2, 1)
        return hidden_state


class CvtSelfAttentionProjection(nn.Module):
    def __init__(self, embed_dim, kernel_size, padding, stride, projection_method="dw_bn"):
        super().__init__()
        if projection_method == "dw_bn":
            self.convolution_projection = CvtSelfAttentionConvProjection(embed_dim, kernel_size, padding, stride)
        self.linear_projection = CvtSelfAttentionLinearProjection()

    def forward(self, hidden_state):
        hidden_state = self.convolution_projection(hidden_state)
        hidden_state = self.linear_projection(hidden_state)
        return hidden_state


class CvtSelfAttention(nn.Module):
    def __init__(
        self,
        num_heads,
        embed_dim,
        kernel_size,
        padding_q,
        padding_kv,
        stride_q,
        stride_kv,
        qkv_projection_method,
        qkv_bias,
        attention_drop_rate,
        with_cls_token=True,
        **kwargs,
    ):
        super().__init__()
        self.scale = embed_dim**-0.5
        self.with_cls_token = with_cls_token
        self.embed_dim = embed_dim
        self.num_heads = num_heads

        self.convolution_projection_query = CvtSelfAttentionProjection(
            embed_dim,
            kernel_size,
            padding_q,
            stride_q,
            projection_method="linear" if qkv_projection_method == "avg" else qkv_projection_method,
        )
        self.convolution_projection_key = CvtSelfAttentionProjection(
            embed_dim, kernel_size, padding_kv, stride_kv, projection_method=qkv_projection_method
        )
        self.convolution_projection_value = CvtSelfAttentionProjection(
            embed_dim, kernel_size, padding_kv, stride_kv, projection_method=qkv_projection_method
        )

        self.projection_query = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
        self.projection_key = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
        self.projection_value = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)

        self.dropout = nn.Dropout(attention_drop_rate)

    def rearrange_for_multi_head_attention(self, hidden_state):
        batch_size, hidden_size, _ = hidden_state.shape
        head_dim = self.embed_dim // self.num_heads
        # rearrange 'b t (h d) -> b h t d'
        return hidden_state.view(batch_size, hidden_size, self.num_heads, head_dim).permute(0, 2, 1, 3)

    def forward(self, hidden_state, height, width):
        if self.with_cls_token:
            cls_token, hidden_state = torch.split(hidden_state, [1, height * width], 1)
        batch_size, hidden_size, num_channels = hidden_state.shape
        # rearrange "b (h w) c -> b c h w"
        hidden_state = hidden_state.permute(0, 2, 1).view(batch_size, num_channels, height, width)

        key = self.convolution_projection_key(hidden_state)
        query = self.convolution_projection_query(hidden_state)
        value = self.convolution_projection_value(hidden_state)

        if self.with_cls_token:
            query = torch.cat((cls_token, query), dim=1)
            key = torch.cat((cls_token, key), dim=1)
            value = torch.cat((cls_token, value), dim=1)

        head_dim = self.embed_dim // self.num_heads

        query = self.rearrange_for_multi_head_attention(self.projection_query(query))
        key = self.rearrange_for_multi_head_attention(self.projection_key(key))
        value = self.rearrange_for_multi_head_attention(self.projection_value(value))

        attention_score = torch.einsum("bhlk,bhtk->bhlt", [query, key]) * self.scale
        attention_probs = torch.nn.functional.softmax(attention_score, dim=-1)
        attention_probs = self.dropout(attention_probs)

        context = torch.einsum("bhlt,bhtv->bhlv", [attention_probs, value])
        # rearrange"b h t d -> b t (h d)"
        _, _, hidden_size, _ = context.shape
        context = context.permute(0, 2, 1, 3).contiguous().view(batch_size, hidden_size, self.num_heads * head_dim)
        return context


class CvtSelfOutput(nn.Module):
    """
    The residual connection is defined in CvtLayer instead of here (as is the case with other models), due to the
    layernorm applied before each block.
    """

    def __init__(self, embed_dim, drop_rate):
        super().__init__()
        self.dense = nn.Linear(embed_dim, embed_dim)
        self.dropout = nn.Dropout(drop_rate)

    def forward(self, hidden_state, input_tensor):
        hidden_state = self.dense(hidden_state)
        hidden_state = self.dropout(hidden_state)
        return hidden_state


class CvtAttention(nn.Module):
    def __init__(
        self,
        num_heads,
        embed_dim,
        kernel_size,
        padding_q,
        padding_kv,
        stride_q,
        stride_kv,
        qkv_projection_method,
        qkv_bias,
        attention_drop_rate,
        drop_rate,
        with_cls_token=True,
    ):
        super().__init__()
        self.attention = CvtSelfAttention(
            num_heads,
            embed_dim,
            kernel_size,
            padding_q,
            padding_kv,
            stride_q,
            stride_kv,
            qkv_projection_method,
            qkv_bias,
            attention_drop_rate,
            with_cls_token,
        )
        self.output = CvtSelfOutput(embed_dim, drop_rate)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.attention.query = prune_linear_layer(self.attention.query, index)
        self.attention.key = prune_linear_layer(self.attention.key, index)
        self.attention.value = prune_linear_layer(self.attention.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
        self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(self, hidden_state, height, width):
        self_output = self.attention(hidden_state, height, width)
        attention_output = self.output(self_output, hidden_state)
        return attention_output


class CvtIntermediate(nn.Module):
    def __init__(self, embed_dim, mlp_ratio):
        super().__init__()
        self.dense = nn.Linear(embed_dim, int(embed_dim * mlp_ratio))
        self.activation = nn.GELU()

    def forward(self, hidden_state):
        hidden_state = self.dense(hidden_state)
        hidden_state = self.activation(hidden_state)
        return hidden_state


class CvtOutput(nn.Module):
    def __init__(self, embed_dim, mlp_ratio, drop_rate):
        super().__init__()
        self.dense = nn.Linear(int(embed_dim * mlp_ratio), embed_dim)
        self.dropout = nn.Dropout(drop_rate)

    def forward(self, hidden_state, input_tensor):
        hidden_state = self.dense(hidden_state)
        hidden_state = self.dropout(hidden_state)
        hidden_state = hidden_state + input_tensor
        return hidden_state


class CvtLayer(nn.Module):
    """
    CvtLayer composed by attention layers, normalization and multi-layer perceptrons (mlps).
    """

    def __init__(
        self,
        num_heads,
        embed_dim,
        kernel_size,
        padding_q,
        padding_kv,
        stride_q,
        stride_kv,
        qkv_projection_method,
        qkv_bias,
        attention_drop_rate,
        drop_rate,
        mlp_ratio,
        drop_path_rate,
        with_cls_token=True,
    ):
        super().__init__()
        self.attention = CvtAttention(
            num_heads,
            embed_dim,
            kernel_size,
            padding_q,
            padding_kv,
            stride_q,
            stride_kv,
            qkv_projection_method,
            qkv_bias,
            attention_drop_rate,
            drop_rate,
            with_cls_token,
        )

        self.intermediate = CvtIntermediate(embed_dim, mlp_ratio)
        self.output = CvtOutput(embed_dim, mlp_ratio, drop_rate)
        self.drop_path = CvtDropPath(drop_prob=drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
        self.layernorm_before = nn.LayerNorm(embed_dim)
        self.layernorm_after = nn.LayerNorm(embed_dim)

    def forward(self, hidden_state, height, width):
        self_attention_output = self.attention(
            self.layernorm_before(hidden_state),  # in Cvt, layernorm is applied before self-attention
            height,
            width,
        )
        attention_output = self_attention_output
        attention_output = self.drop_path(attention_output)

        # first residual connection
        hidden_state = attention_output + hidden_state

        # in Cvt, layernorm is also applied after self-attention
        layer_output = self.layernorm_after(hidden_state)
        layer_output = self.intermediate(layer_output)

        # second residual connection is done here
        layer_output = self.output(layer_output, hidden_state)
        layer_output = self.drop_path(layer_output)
        return layer_output


class CvtStage(nn.Module):
    def __init__(self, config, stage):
        super().__init__()
        self.config = config
        self.stage = stage
        if self.config.cls_token[self.stage]:
            self.cls_token = nn.Parameter(torch.randn(1, 1, self.config.embed_dim[-1]))

        self.embedding = CvtEmbeddings(
            patch_size=config.patch_sizes[self.stage],
            stride=config.patch_stride[self.stage],
            num_channels=config.num_channels if self.stage == 0 else config.embed_dim[self.stage - 1],
            embed_dim=config.embed_dim[self.stage],
            padding=config.patch_padding[self.stage],
            dropout_rate=config.drop_rate[self.stage],
        )

        drop_path_rates = [x.item() for x in torch.linspace(0, config.drop_path_rate[self.stage], config.depth[stage])]

        self.layers = nn.Sequential(
            *[
                CvtLayer(
                    num_heads=config.num_heads[self.stage],
                    embed_dim=config.embed_dim[self.stage],
                    kernel_size=config.kernel_qkv[self.stage],
                    padding_q=config.padding_q[self.stage],
                    padding_kv=config.padding_kv[self.stage],
                    stride_kv=config.stride_kv[self.stage],
                    stride_q=config.stride_q[self.stage],
                    qkv_projection_method=config.qkv_projection_method[self.stage],
                    qkv_bias=config.qkv_bias[self.stage],
                    attention_drop_rate=config.attention_drop_rate[self.stage],
                    drop_rate=config.drop_rate[self.stage],
                    drop_path_rate=drop_path_rates[self.stage],
                    mlp_ratio=config.mlp_ratio[self.stage],
                    with_cls_token=config.cls_token[self.stage],
                )
                for _ in range(config.depth[self.stage])
            ]
        )

    def forward(self, hidden_state):
        cls_token = None
        hidden_state = self.embedding(hidden_state)
        batch_size, num_channels, height, width = hidden_state.shape
        # rearrange b c h w -> b (h w) c"
        hidden_state = hidden_state.view(batch_size, num_channels, height * width).permute(0, 2, 1)
        if self.config.cls_token[self.stage]:
            cls_token = self.cls_token.expand(batch_size, -1, -1)
            hidden_state = torch.cat((cls_token, hidden_state), dim=1)

        for layer in self.layers:
            layer_outputs = layer(hidden_state, height, width)
            hidden_state = layer_outputs

        if self.config.cls_token[self.stage]:
            cls_token, hidden_state = torch.split(hidden_state, [1, height * width], 1)
        hidden_state = hidden_state.permute(0, 2, 1).view(batch_size, num_channels, height, width)
        return hidden_state, cls_token


class CvtEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.stages = nn.ModuleList([])
        for stage_idx in range(len(config.depth)):
            self.stages.append(CvtStage(config, stage_idx))

    def forward(self, pixel_values, output_hidden_states=False, return_dict=True):
        all_hidden_states = () if output_hidden_states else None
        hidden_state = pixel_values

        cls_token = None
        for _, (stage_module) in enumerate(self.stages):
            hidden_state, cls_token = stage_module(hidden_state)
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_state,)

        if not return_dict:
            return tuple(v for v in [hidden_state, cls_token, all_hidden_states] if v is not None)

        return BaseModelOutputWithCLSToken(
            last_hidden_state=hidden_state,
            cls_token_value=cls_token,
            hidden_states=all_hidden_states,
        )


class CvtPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = CvtConfig
    base_model_prefix = "cvt"
    main_input_name = "pixel_values"

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, (nn.Linear, nn.Conv2d)):
            module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, CvtStage):
            if self.config.cls_token[module.stage]:
                module.cls_token.data = nn.init.trunc_normal_(
                    torch.zeros(1, 1, self.config.embed_dim[-1]), mean=0.0, std=self.config.initializer_range
                )


CVT_START_DOCSTRING = r"""
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
    as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`CvtConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

CVT_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CvtImageProcessor.__call__`]
            for details.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare Cvt Model transformer outputting raw hidden-states without any specific head on top.",
    CVT_START_DOCSTRING,
)
class CvtModel(CvtPreTrainedModel):
    def __init__(self, config, add_pooling_layer=True):
        super().__init__(config)
        self.config = config
        self.encoder = CvtEncoder(config)
        self.post_init()

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    @add_start_docstrings_to_model_forward(CVT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithCLSToken,
        config_class=_CONFIG_FOR_DOC,
        modality="vision",
        expected_output=_EXPECTED_OUTPUT_SHAPE,
    )
    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithCLSToken]:
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        encoder_outputs = self.encoder(
            pixel_values,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]

        if not return_dict:
            return (sequence_output,) + encoder_outputs[1:]

        return BaseModelOutputWithCLSToken(
            last_hidden_state=sequence_output,
            cls_token_value=encoder_outputs.cls_token_value,
            hidden_states=encoder_outputs.hidden_states,
        )


@add_start_docstrings(
    """
    Cvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
    the [CLS] token) e.g. for ImageNet.
    """,
    CVT_START_DOCSTRING,
)
class CvtForImageClassification(CvtPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.num_labels = config.num_labels
        self.cvt = CvtModel(config, add_pooling_layer=False)
        self.layernorm = nn.LayerNorm(config.embed_dim[-1])
        # Classifier head
        self.classifier = (
            nn.Linear(config.embed_dim[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
        )

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(CVT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_IMAGE_CLASS_CHECKPOINT,
        output_type=ImageClassifierOutputWithNoAttention,
        config_class=_CONFIG_FOR_DOC,
        expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
    )
    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        outputs = self.cvt(
            pixel_values,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]
        cls_token = outputs[1]
        if self.config.cls_token[-1]:
            sequence_output = self.layernorm(cls_token)
        else:
            batch_size, num_channels, height, width = sequence_output.shape
            # rearrange "b c h w -> b (h w) c"
            sequence_output = sequence_output.view(batch_size, num_channels, height * width).permute(0, 2, 1)
            sequence_output = self.layernorm(sequence_output)

        sequence_output_mean = sequence_output.mean(dim=1)
        logits = self.classifier(sequence_output_mean)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.config.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.config.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)