File size: 57,541 Bytes
f8f5cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
# coding=utf-8
# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import gc
import json
import os
import re
import warnings
from functools import partial
from pickle import UnpicklingError
from typing import Any, Dict, Optional, Set, Tuple, Union

import flax.linen as nn
import jax
import jax.numpy as jnp
import msgpack.exceptions
from flax.core.frozen_dict import FrozenDict, unfreeze
from flax.serialization import from_bytes, to_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey

from .configuration_utils import PretrainedConfig
from .dynamic_module_utils import custom_object_save
from .generation import FlaxGenerationMixin, GenerationConfig
from .modeling_flax_pytorch_utils import load_pytorch_checkpoint_in_flax_state_dict
from .utils import (
    FLAX_WEIGHTS_INDEX_NAME,
    FLAX_WEIGHTS_NAME,
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
    PushToHubMixin,
    add_code_sample_docstrings,
    add_start_docstrings_to_model_forward,
    cached_file,
    copy_func,
    download_url,
    has_file,
    is_offline_mode,
    is_remote_url,
    logging,
    replace_return_docstrings,
)
from .utils.hub import convert_file_size_to_int, get_checkpoint_shard_files


logger = logging.get_logger(__name__)


def quick_gelu(x):
    return x * jax.nn.sigmoid(1.702 * x)


ACT2FN = {
    "gelu": partial(nn.gelu, approximate=False),
    "relu": nn.relu,
    "silu": nn.swish,
    "swish": nn.swish,
    "gelu_new": partial(nn.gelu, approximate=True),
    "quick_gelu": quick_gelu,
}


def dtype_byte_size(dtype):
    """
    Returns the size (in bytes) occupied by one parameter of type `dtype`. Example:
    ```py
    >>> dtype_byte_size(np.float32)
    4
    ```
    """
    if dtype == bool:
        return 1 / 8
    bit_search = re.search(r"[^\d](\d+)$", dtype.name)
    if bit_search is None:
        raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
    bit_size = int(bit_search.groups()[0])
    return bit_size // 8


def flax_shard_checkpoint(params, max_shard_size="10GB"):
    """
    Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
    given size. The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so
    there is no optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For
    example, if the limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as
    [6GB], [6+2GB], [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].

    <Tip warning={true}>

    If one of the model's weight is bigger that `max_shard_size`, it will end up in its own sub-checkpoint which will
    have a size greater than `max_shard_size`.

    </Tip>

    Args:
        params (`Union[Dict, FrozenDict]`): A `PyTree` of model parameters.
        max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
            The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
            (like `"5MB"`).
    """
    max_shard_size = convert_file_size_to_int(max_shard_size)

    sharded_state_dicts = []
    current_block = {}
    current_block_size = 0
    total_size = 0

    # flatten the weights to chunk
    weights = flatten_dict(params, sep="/")
    for item in weights:
        weight_size = weights[item].size * dtype_byte_size(weights[item].dtype)

        # If this weight is going to tip up over the maximal size, we split.
        if current_block_size + weight_size > max_shard_size:
            sharded_state_dicts.append(current_block)
            current_block = {}
            current_block_size = 0

        current_block[item] = weights[item]
        current_block_size += weight_size
        total_size += weight_size

    # Add the last block
    sharded_state_dicts.append(current_block)

    # If we only have one shard, we return it
    if len(sharded_state_dicts) == 1:
        return {FLAX_WEIGHTS_NAME: sharded_state_dicts[0]}, None

    # Otherwise, let's build the index
    weight_map = {}
    shards = {}
    for idx, shard in enumerate(sharded_state_dicts):
        shard_file = FLAX_WEIGHTS_NAME.replace(".msgpack", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.msgpack")
        shards[shard_file] = shard
        for weight_name in shard.keys():
            weight_map[weight_name] = shard_file

    # Add the metadata
    metadata = {"total_size": total_size}
    index = {"metadata": metadata, "weight_map": weight_map}
    return shards, index


class FlaxPreTrainedModel(PushToHubMixin, FlaxGenerationMixin):
    r"""
    Base class for all models.

    [`FlaxPreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
    downloading and saving models.

    Class attributes (overridden by derived classes):

        - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
          for this model architecture.
        - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
          classes of the same architecture adding modules on top of the base model.
        - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
          models, `pixel_values` for vision models and `input_values` for speech models).
    """
    config_class = None
    base_model_prefix = ""
    main_input_name = "input_ids"
    _auto_class = None
    _missing_keys = set()

    def __init__(
        self,
        config: PretrainedConfig,
        module: nn.Module,
        input_shape: Tuple = (1, 1),
        seed: int = 0,
        dtype: jnp.dtype = jnp.float32,
        _do_init: bool = True,
    ):
        if config is None:
            raise ValueError("config cannot be None")

        if module is None:
            raise ValueError("module cannot be None")

        # Those are private to be exposed as typed property on derived classes.
        self._config = config
        self._module = module

        # Those are public as their type is generic to every derived classes.
        self.key = PRNGKey(seed)
        self.dtype = dtype
        self.input_shape = input_shape
        self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None

        # To check if the model was intialized automatically.
        self._is_initialized = _do_init

        if _do_init:
            # randomly initialized parameters
            random_params = self.init_weights(self.key, input_shape)
            params_shape_tree = jax.eval_shape(lambda params: params, random_params)
        else:
            init_fn = partial(self.init_weights, input_shape=input_shape)
            params_shape_tree = jax.eval_shape(init_fn, self.key)

            logger.info(
                "Model weights are not initialized as `_do_init` is set to `False`. "
                f"Make sure to call `{self.__class__.__name__}.init_weights` manually to initialize the weights."
            )

        # get the shape of the parameters
        self._params_shape_tree = params_shape_tree

        # save required_params as set
        self._required_params = set(flatten_dict(unfreeze(params_shape_tree)).keys())

        # initialize the parameters
        if _do_init:
            self.params = random_params

    def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> Dict:
        raise NotImplementedError(f"init method has to be implemented for {self}")

    def enable_gradient_checkpointing(self):
        raise NotImplementedError(f"gradient checkpointing method has to be implemented for {self}")

    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.
        """
        return cls(config, **kwargs)

    @property
    def framework(self) -> str:
        """
        :str: Identifies that this is a Flax model.
        """
        return "flax"

    @property
    def config(self) -> PretrainedConfig:
        return self._config

    @property
    def module(self) -> nn.Module:
        return self._module

    @property
    def params(self) -> Union[Dict, FrozenDict]:
        if not self._is_initialized:
            raise ValueError(
                "`params` cannot be accessed from model when the model is created with `_do_init=False`. "
                "You must call `init_weights` manually and store the params outside of the model and "
                "pass it explicitly where needed."
            )
        return self._params

    @property
    def required_params(self) -> Set:
        return self._required_params

    @property
    def params_shape_tree(self) -> Dict:
        return self._params_shape_tree

    @params.setter
    def params(self, params: Union[Dict, FrozenDict]):
        # don't set params if the model is not initialized
        if not self._is_initialized:
            raise ValueError(
                "`params` cannot be set from model when the model is created with `_do_init=False`. "
                "You store the params outside of the model."
            )

        if isinstance(params, FrozenDict):
            params = unfreeze(params)
        param_keys = set(flatten_dict(params).keys())
        if len(self.required_params - param_keys) > 0:
            raise ValueError(
                "Some parameters are missing. Make sure that `params` include the following "
                f"parameters {self.required_params - param_keys}"
            )
        self._params = params

    def _cast_floating_to(self, params: Union[Dict, FrozenDict], dtype: jnp.dtype, mask: Any = None) -> Any:
        """
        Helper method to cast floating-point values of given parameter `PyTree` to given `dtype`.
        """

        # taken from https://github.com/deepmind/jmp/blob/3a8318abc3292be38582794dbf7b094e6583b192/jmp/_src/policy.py#L27
        def conditional_cast(param):
            if isinstance(param, jnp.ndarray) and jnp.issubdtype(param.dtype, jnp.floating):
                param = param.astype(dtype)
            return param

        if mask is None:
            return jax.tree_util.tree_map(conditional_cast, params)

        flat_params = flatten_dict(params)
        flat_mask, _ = jax.tree_util.tree_flatten(mask)

        for masked, key in zip(flat_mask, flat_params.keys()):
            if masked:
                param = flat_params[key]
                flat_params[key] = conditional_cast(param)

        return unflatten_dict(flat_params)

    def to_bf16(self, params: Union[Dict, FrozenDict], mask: Any = None):
        r"""
        Cast the floating-point `params` to `jax.numpy.bfloat16`. This returns a new `params` tree and does not cast
        the `params` in place.

        This method can be used on TPU to explicitly convert the model parameters to bfloat16 precision to do full
        half-precision training or to save weights in bfloat16 for inference in order to save memory and improve speed.

        Arguments:
            params (`Union[Dict, FrozenDict]`):
                A `PyTree` of model parameters.
            mask (`Union[Dict, FrozenDict]`):
                A `PyTree` with same structure as the `params` tree. The leaves should be booleans, `True` for params
                you want to cast, and should be `False` for those you want to skip.

        Examples:

        ```python
        >>> from transformers import FlaxBertModel

        >>> # load model
        >>> model = FlaxBertModel.from_pretrained("bert-base-cased")
        >>> # By default, the model parameters will be in fp32 precision, to cast these to bfloat16 precision
        >>> model.params = model.to_bf16(model.params)
        >>> # If you want don't want to cast certain parameters (for example layer norm bias and scale)
        >>> # then pass the mask as follows
        >>> from flax import traverse_util

        >>> model = FlaxBertModel.from_pretrained("bert-base-cased")
        >>> flat_params = traverse_util.flatten_dict(model.params)
        >>> mask = {
        ...     path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale"))
        ...     for path in flat_params
        ... }
        >>> mask = traverse_util.unflatten_dict(mask)
        >>> model.params = model.to_bf16(model.params, mask)
        ```"""
        return self._cast_floating_to(params, jnp.bfloat16, mask)

    def to_fp32(self, params: Union[Dict, FrozenDict], mask: Any = None):
        r"""
        Cast the floating-point `parmas` to `jax.numpy.float32`. This method can be used to explicitly convert the
        model parameters to fp32 precision. This returns a new `params` tree and does not cast the `params` in place.

        Arguments:
            params (`Union[Dict, FrozenDict]`):
                A `PyTree` of model parameters.
            mask (`Union[Dict, FrozenDict]`):
                A `PyTree` with same structure as the `params` tree. The leaves should be booleans, `True` for params
                you want to cast, and should be `False` for those you want to skip

        Examples:

        ```python
        >>> from transformers import FlaxBertModel

        >>> # Download model and configuration from huggingface.co
        >>> model = FlaxBertModel.from_pretrained("bert-base-cased")
        >>> # By default, the model params will be in fp32, to illustrate the use of this method,
        >>> # we'll first cast to fp16 and back to fp32
        >>> model.params = model.to_f16(model.params)
        >>> # now cast back to fp32
        >>> model.params = model.to_fp32(model.params)
        ```"""
        return self._cast_floating_to(params, jnp.float32, mask)

    def to_fp16(self, params: Union[Dict, FrozenDict], mask: Any = None):
        r"""
        Cast the floating-point `parmas` to `jax.numpy.float16`. This returns a new `params` tree and does not cast the
        `params` in place.

        This method can be used on GPU to explicitly convert the model parameters to float16 precision to do full
        half-precision training or to save weights in float16 for inference in order to save memory and improve speed.

        Arguments:
            params (`Union[Dict, FrozenDict]`):
                A `PyTree` of model parameters.
            mask (`Union[Dict, FrozenDict]`):
                A `PyTree` with same structure as the `params` tree. The leaves should be booleans, `True` for params
                you want to cast, and should be `False` for those you want to skip

        Examples:

        ```python
        >>> from transformers import FlaxBertModel

        >>> # load model
        >>> model = FlaxBertModel.from_pretrained("bert-base-cased")
        >>> # By default, the model params will be in fp32, to cast these to float16
        >>> model.params = model.to_fp16(model.params)
        >>> # If you want don't want to cast certain parameters (for example layer norm bias and scale)
        >>> # then pass the mask as follows
        >>> from flax import traverse_util

        >>> model = FlaxBertModel.from_pretrained("bert-base-cased")
        >>> flat_params = traverse_util.flatten_dict(model.params)
        >>> mask = {
        ...     path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale"))
        ...     for path in flat_params
        ... }
        >>> mask = traverse_util.unflatten_dict(mask)
        >>> model.params = model.to_fp16(model.params, mask)
        ```"""
        return self._cast_floating_to(params, jnp.float16, mask)

    @classmethod
    def load_flax_sharded_weights(cls, shard_files):
        """
        This is the same as [`flax.serialization.from_bytes`]
        (https:lax.readthedocs.io/en/latest/_modules/flax/serialization.html#from_bytes) but for a sharded checkpoint.

        This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being
        loaded in the model.

        Args:
            shard_files (`List[str]`:
                The list of shard files to load.

        Returns:
            `Dict`: A nested dictionary of the model parameters, in the expected format for flax models : `{'model':
            {'params': {'...'}}}`.
        """

        # Load the index
        state_sharded_dict = {}

        for shard_file in shard_files:
            # load using msgpack utils
            try:
                with open(shard_file, "rb") as state_f:
                    state = from_bytes(cls, state_f.read())
            except (UnpicklingError, msgpack.exceptions.ExtraData) as e:
                with open(shard_file) as f:
                    if f.read().startswith("version"):
                        raise OSError(
                            "You seem to have cloned a repository without having git-lfs installed. Please"
                            " install git-lfs and run `git lfs install` followed by `git lfs pull` in the"
                            " folder you cloned."
                        )
                    else:
                        raise ValueError from e
            except (UnicodeDecodeError, ValueError):
                raise EnvironmentError(f"Unable to convert {shard_file} to Flax deserializable object. ")

            state = flatten_dict(state, sep="/")
            state_sharded_dict.update(state)
            del state
            gc.collect()

        # the state dict is unflattened to the match the format of model.params
        return unflatten_dict(state_sharded_dict, sep="/")

    @classmethod
    def can_generate(cls) -> bool:
        """
        Returns whether this model can generate sequences with `.generate()`. Returns:
            `bool`: Whether this model can generate sequences with `.generate()`.
        """
        # Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation.
        # Alternativelly, the model can also have a custom `generate` function.
        if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate):
            return False
        return True

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Union[str, os.PathLike],
        dtype: jnp.dtype = jnp.float32,
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        **kwargs,
    ):
        r"""
        Instantiate a pretrained flax model from a pre-trained model configuration.

        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.

        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
        weights are discarded.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
                    - A path to a *directory* containing model weights saved using
                      [`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *pt index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case,
                      `from_pt` should be set to `True`.
            dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
                The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
                `jax.numpy.bfloat16` (on TPUs).

                This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
                specified all the computation will be performed with the given `dtype`.

                **Note that this only specifies the dtype of the computation and does not influence the dtype of model
                parameters.**

                If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
                [`~FlaxPreTrainedModel.to_bf16`].
            model_args (sequence of positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.
            config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*):
                Can be either:

                    - an instance of a class derived from [`PretrainedConfig`],
                    - a string or path valid as input to [`~PretrainedConfig.from_pretrained`].

                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
                be automatically loaded when:

                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
                      model).
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            from_pt (`bool`, *optional*, defaults to `False`):
                Load the model weights from a PyTorch checkpoint save file (see docstring of
                `pretrained_model_name_or_path` argument).
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            token (`str` or `bool`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.


                <Tip>

                To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".

                </Tip>

            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
                specify the folder name here.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
                automatically loaded:

                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
                      already been done)
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.

        Examples:

        ```python
        >>> from transformers import BertConfig, FlaxBertModel

        >>> # Download model and configuration from huggingface.co and cache.
        >>> model = FlaxBertModel.from_pretrained("bert-base-cased")
        >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
        >>> model = FlaxBertModel.from_pretrained("./test/saved_model/")
        >>> # Loading from a PyTorch checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
        >>> config = BertConfig.from_json_file("./pt_model/config.json")
        >>> model = FlaxBertModel.from_pretrained("./pt_model/pytorch_model.bin", from_pt=True, config=config)
        ```"""
        from_pt = kwargs.pop("from_pt", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        use_auth_token = kwargs.pop("use_auth_token", None)
        trust_remote_code = kwargs.pop("trust_remote_code", None)
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)
        _do_init = kwargs.pop("_do_init", True)
        subfolder = kwargs.pop("subfolder", "")
        commit_hash = kwargs.pop("_commit_hash", None)

        # Not relevant for Flax Models
        _ = kwargs.pop("adapter_kwargs", None)

        if use_auth_token is not None:
            warnings.warn(
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

        if trust_remote_code is True:
            logger.warning(
                "The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is"
                " ignored."
            )

        user_agent = {"file_type": "model", "framework": "flax", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline

        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
            config, model_kwargs = cls.config_class.from_pretrained(
                config_path,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
                force_download=force_download,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
                subfolder=subfolder,
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
                _commit_hash=commit_hash,
                **kwargs,
            )
        else:
            model_kwargs = kwargs.copy()

        if commit_hash is None:
            commit_hash = getattr(config, "_commit_hash", None)

        # Add the dtype to model_kwargs
        model_kwargs["dtype"] = dtype

        # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
        # index of the files.
        is_sharded = False

        # Load model
        if pretrained_model_name_or_path is not None:
            pretrained_model_name_or_path = str(pretrained_model_name_or_path)
            is_local = os.path.isdir(pretrained_model_name_or_path)
            if os.path.isdir(pretrained_model_name_or_path):
                if from_pt and os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_NAME)):
                    # Load from a PyTorch checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_NAME)
                elif from_pt and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_INDEX_NAME)
                ):
                    # Load from a sharded pytorch checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_INDEX_NAME)
                    is_sharded = True
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)):
                    # Load from a Flax checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_INDEX_NAME)):
                    # Load from a sharded Flax checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_INDEX_NAME)
                    is_sharded = True
                # At this stage we don't have a weight file so we will raise an error.
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_NAME)):
                    raise EnvironmentError(
                        f"Error no file named {FLAX_WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} "
                        "but there is a file for PyTorch weights. Use `from_pt=True` to load this model from those "
                        "weights."
                    )
                else:
                    raise EnvironmentError(
                        f"Error no file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME} found in directory "
                        f"{pretrained_model_name_or_path}."
                    )
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
                archive_file = pretrained_model_name_or_path
                is_local = True
            elif is_remote_url(pretrained_model_name_or_path):
                filename = pretrained_model_name_or_path
                resolved_archive_file = download_url(pretrained_model_name_or_path)
            else:
                filename = WEIGHTS_NAME if from_pt else FLAX_WEIGHTS_NAME
                try:
                    # Load from URL or cache if already cached
                    cached_file_kwargs = {
                        "cache_dir": cache_dir,
                        "force_download": force_download,
                        "proxies": proxies,
                        "resume_download": resume_download,
                        "local_files_only": local_files_only,
                        "token": token,
                        "user_agent": user_agent,
                        "revision": revision,
                        "subfolder": subfolder,
                        "_raise_exceptions_for_missing_entries": False,
                        "_commit_hash": commit_hash,
                    }
                    resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)

                    # Since we set _raise_exceptions_for_missing_entries=False, we don't get an expection but a None
                    # result when internet is up, the repo and revision exist, but the file does not.
                    if resolved_archive_file is None and filename == FLAX_WEIGHTS_NAME:
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                        resolved_archive_file = cached_file(
                            pretrained_model_name_or_path, FLAX_WEIGHTS_INDEX_NAME, **cached_file_kwargs
                        )
                        if resolved_archive_file is not None:
                            is_sharded = True
                    # Maybe the checkpoint is pytorch sharded, we try to grab the pytorch index name in this case.
                    elif resolved_archive_file is None and from_pt:
                        resolved_archive_file = cached_file(
                            pretrained_model_name_or_path, WEIGHTS_INDEX_NAME, **cached_file_kwargs
                        )
                        if resolved_archive_file is not None:
                            is_sharded = True
                    if resolved_archive_file is None:
                        # Otherwise, maybe there is a TF or Flax model file.  We try those to give a helpful error
                        # message.
                        has_file_kwargs = {
                            "revision": revision,
                            "proxies": proxies,
                            "token": token,
                        }
                        if has_file(pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {FLAX_WEIGHTS_NAME} but there is a file for PyTorch weights. Use `from_pt=True` to"
                                " load this model from those weights."
                            )
                        elif has_file(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME, **has_file_kwargs):
                            raise EnvironmentError(
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {FLAX_WEIGHTS_INDEX_NAME} but there is a sharded file for PyTorch weights. Use"
                                " `from_pt=True` to load this model from those weights."
                            )
                        else:
                            raise EnvironmentError(
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}."
                            )
                except EnvironmentError:
                    # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
                    # to the original exception.
                    raise
                except Exception:
                    # For any other exception, we throw a generic error.
                    raise EnvironmentError(
                        f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it"
                        " from 'https://huggingface.co./models', make sure you don't have a local directory with the"
                        f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
                        f" directory containing a file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}."
                    )

            if is_local:
                logger.info(f"loading weights file {archive_file}")
                resolved_archive_file = archive_file
            else:
                logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}")
        else:
            resolved_archive_file = None

        # We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
        if is_sharded:
            # resolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
            resolved_archive_file, _ = get_checkpoint_shard_files(
                pretrained_model_name_or_path,
                resolved_archive_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
                token=token,
                user_agent=user_agent,
                revision=revision,
                subfolder=subfolder,
                _commit_hash=commit_hash,
            )

        # init random models
        model = cls(config, *model_args, _do_init=_do_init, **model_kwargs)

        if from_pt:
            state = load_pytorch_checkpoint_in_flax_state_dict(model, resolved_archive_file, is_sharded)
        else:
            if is_sharded:
                state = cls.load_flax_sharded_weights(resolved_archive_file)
            else:
                try:
                    with open(resolved_archive_file, "rb") as state_f:
                        state = from_bytes(cls, state_f.read())
                except (UnpicklingError, msgpack.exceptions.ExtraData) as e:
                    try:
                        with open(resolved_archive_file) as f:
                            if f.read().startswith("version"):
                                raise OSError(
                                    "You seem to have cloned a repository without having git-lfs installed. Please"
                                    " install git-lfs and run `git lfs install` followed by `git lfs pull` in the"
                                    " folder you cloned."
                                )
                            else:
                                raise ValueError from e
                    except (UnicodeDecodeError, ValueError):
                        raise EnvironmentError(f"Unable to convert {archive_file} to Flax deserializable object. ")
            # make sure all arrays are stored as jnp.arrays
            # NOTE: This is to prevent a bug this will be fixed in Flax >= v0.3.4:
            # https://github.com/google/flax/issues/1261
            if _do_init:
                state = jax.tree_util.tree_map(jnp.array, state)
            else:
                # keep the params on CPU if we don't want to initialize
                state = jax.tree_util.tree_map(lambda x: jax.device_put(x, jax.devices("cpu")[0]), state)

        if "batch_stats" in state:  # if flax model contains batch norm layers
            # if model is base model only use model_prefix key
            if (
                cls.base_model_prefix not in dict(model.params_shape_tree["params"])
                and cls.base_model_prefix in state["params"]
            ):
                state["params"] = state["params"][cls.base_model_prefix]
                state["batch_stats"] = state["batch_stats"][cls.base_model_prefix]

            # if model is head model and we are loading weights from base model
            # we initialize new params dict with base_model_prefix
            if (
                cls.base_model_prefix in dict(model.params_shape_tree["params"])
                and cls.base_model_prefix not in state["params"]
            ):
                state = {
                    "params": {cls.base_model_prefix: state["params"]},
                    "batch_stats": {cls.base_model_prefix: state["batch_stats"]},
                }

        else:
            # if model is base model only use model_prefix key
            if cls.base_model_prefix not in dict(model.params_shape_tree) and cls.base_model_prefix in state:
                state = state[cls.base_model_prefix]

            # if model is head model and we are loading weights from base model
            # we initialize new params dict with base_model_prefix
            if cls.base_model_prefix in dict(model.params_shape_tree) and cls.base_model_prefix not in state:
                state = {cls.base_model_prefix: state}

        # flatten dicts
        state = flatten_dict(state)

        random_state = flatten_dict(unfreeze(model.params if _do_init else model.params_shape_tree))

        missing_keys = model.required_params - set(state.keys())
        unexpected_keys = set(state.keys()) - model.required_params

        # Disabling warning when porting pytorch weights to flax, flax does not uses num_batches_tracked
        for unexpected_key in unexpected_keys.copy():
            if "num_batches_tracked" in unexpected_key[-1]:
                unexpected_keys.remove(unexpected_key)

        if missing_keys and not _do_init:
            logger.warning(
                f"The checkpoint {pretrained_model_name_or_path} is missing required keys: {missing_keys}. "
                "Make sure to call model.init_weights to initialize the missing weights."
            )
            cls._missing_keys = missing_keys

        # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
        # matching the weights in the model.
        mismatched_keys = []
        for key in state.keys():
            if key in random_state and state[key].shape != random_state[key].shape:
                if ignore_mismatched_sizes:
                    mismatched_keys.append((key, state[key].shape, random_state[key].shape))
                    state[key] = random_state[key]
                else:
                    raise ValueError(
                        f"Trying to load the pretrained weight for {key} failed: checkpoint has shape "
                        f"{state[key].shape} which is incompatible with the model shape {random_state[key].shape}. "
                        "Using `ignore_mismatched_sizes=True` if you really want to load this checkpoint inside this "
                        "model."
                    )

        # add missing keys as random parameters if we are initializing
        if missing_keys and _do_init:
            for missing_key in missing_keys:
                state[missing_key] = random_state[missing_key]

        # remove unexpected keys to not be saved again
        for unexpected_key in unexpected_keys:
            del state[unexpected_key]

        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
                " with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical"
                " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")

        if len(missing_keys) > 0:
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
        elif len(mismatched_keys) == 0:
            logger.info(
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
                f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
                " training."
            )
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able"
                " to use it for predictions and inference."
            )

        # dictionary of key: dtypes for the model params
        param_dtypes = jax.tree_util.tree_map(lambda x: x.dtype, state)
        # extract keys of parameters not in jnp.float32
        fp16_params = [k for k in param_dtypes if param_dtypes[k] == jnp.float16]
        bf16_params = [k for k in param_dtypes if param_dtypes[k] == jnp.bfloat16]

        # raise a warning if any of the parameters are not in jnp.float32
        if len(fp16_params) > 0:
            logger.warning(
                f"Some of the weights of {model.__class__.__name__} were initialized in float16 precision from "
                f"the model checkpoint at {pretrained_model_name_or_path}:\n{fp16_params}\n"
                "You should probably UPCAST the model weights to float32 if this was not intended. "
                "See [`~FlaxPreTrainedModel.to_fp32`] for further information on how to do this."
            )

        if len(bf16_params) > 0:
            logger.warning(
                f"Some of the weights of {model.__class__.__name__} were initialized in bfloat16 precision from "
                f"the model checkpoint at {pretrained_model_name_or_path}:\n{bf16_params}\n"
                "You should probably UPCAST the model weights to float32 if this was not intended. "
                "See [`~FlaxPreTrainedModel.to_fp32`] for further information on how to do this."
            )

        # If it is a model with generation capabilities, attempt to load the generation config
        if model.can_generate():
            try:
                model.generation_config = GenerationConfig.from_pretrained(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    revision=revision,
                    subfolder=subfolder,
                    _from_auto=from_auto_class,
                    _from_pipeline=from_pipeline,
                    **kwargs,
                )
            except OSError:
                logger.info(
                    "Generation config file not found, using a generation config created from the model config."
                )
                pass

        if _do_init:
            # set correct parameters
            model.params = unflatten_dict(state)
            return model
        else:
            return model, unflatten_dict(state)

    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        params=None,
        push_to_hub=False,
        max_shard_size="10GB",
        token: Optional[Union[str, bool]] = None,
        **kwargs,
    ):
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
        `[`~FlaxPreTrainedModel.from_pretrained`]` class method

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to which to save. Will be created if it doesn't exist.
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).

                <Tip warning={true}>

                If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
                which will be bigger than `max_shard_size`.

                </Tip>

            token (`str` or `bool`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
        """
        use_auth_token = kwargs.pop("use_auth_token", None)

        if use_auth_token is not None:
            warnings.warn(
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

        if token is not None:
            kwargs["token"] = token

        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        os.makedirs(save_directory, exist_ok=True)

        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = self._create_repo(repo_id, **kwargs)
            files_timestamps = self._get_files_timestamps(save_directory)

        # get abs dir
        save_directory = os.path.abspath(save_directory)
        # save config as well
        self.config.architectures = [self.__class__.__name__[4:]]

        # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            custom_object_save(self, save_directory, config=self.config)

        self.config.save_pretrained(save_directory)
        if self.can_generate():
            self.generation_config.save_pretrained(save_directory)

        # save model
        output_model_file = os.path.join(save_directory, FLAX_WEIGHTS_NAME)

        shards, index = flax_shard_checkpoint(params if params is not None else self.params, max_shard_size)
        # Clean the folder from a previous save
        for filename in os.listdir(save_directory):
            full_filename = os.path.join(save_directory, filename)
            if (
                filename.startswith(FLAX_WEIGHTS_NAME[:-4])
                and os.path.isfile(full_filename)
                and filename not in shards.keys()
            ):
                os.remove(full_filename)

        if index is None:
            with open(output_model_file, "wb") as f:
                params = params if params is not None else self.params
                model_bytes = to_bytes(params)
                f.write(model_bytes)

        else:
            save_index_file = os.path.join(save_directory, FLAX_WEIGHTS_INDEX_NAME)
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
                f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
                f"index located at {save_index_file}."
            )
            for shard_file, shard in shards.items():
                # the shard item are unflattened, to save them we need to flatten them again
                with open(os.path.join(save_directory, shard_file), mode="wb") as f:
                    params = unflatten_dict(shard, sep="/")
                    shard_bytes = to_bytes(params)
                    f.write(shard_bytes)

        logger.info(f"Model weights saved in {output_model_file}")

        if push_to_hub:
            self._upload_modified_files(
                save_directory,
                repo_id,
                files_timestamps,
                commit_message=commit_message,
                token=token,
            )

    @classmethod
    def register_for_auto_class(cls, auto_class="FlaxAutoModel"):
        """
        Register this class with a given auto class. This should only be used for custom models as the ones in the
        library are already mapped with an auto class.

        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"FlaxAutoModel"`):
                The auto class to register this new model with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class


# To update the docstring, we need to copy the method, otherwise we change the original docstring.
FlaxPreTrainedModel.push_to_hub = copy_func(FlaxPreTrainedModel.push_to_hub)
if FlaxPreTrainedModel.push_to_hub.__doc__ is not None:
    FlaxPreTrainedModel.push_to_hub.__doc__ = FlaxPreTrainedModel.push_to_hub.__doc__.format(
        object="model", object_class="FlaxAutoModel", object_files="model checkpoint"
    )


def overwrite_call_docstring(model_class, docstring):
    # copy __call__ function to be sure docstring is changed only for this function
    model_class.__call__ = copy_func(model_class.__call__)
    # delete existing docstring
    model_class.__call__.__doc__ = None
    # set correct docstring
    model_class.__call__ = add_start_docstrings_to_model_forward(docstring)(model_class.__call__)


def append_call_sample_docstring(model_class, checkpoint, output_type, config_class, mask=None):
    model_class.__call__ = copy_func(model_class.__call__)
    model_class.__call__ = add_code_sample_docstrings(
        checkpoint=checkpoint,
        output_type=output_type,
        config_class=config_class,
        model_cls=model_class.__name__,
    )(model_class.__call__)


def append_replace_return_docstrings(model_class, output_type, config_class):
    model_class.__call__ = copy_func(model_class.__call__)
    model_class.__call__ = replace_return_docstrings(
        output_type=output_type,
        config_class=config_class,
    )(model_class.__call__)