File size: 9,205 Bytes
f8f5cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import random
import numpy as np
import os,sys
import requests
import torch
import torchvision.transforms as torchvision_T
from PIL import Image

from transformers import AutoProcessor, AutoModelForVision2Seq
# import subprocess, io, os, sys, time
# sys.path.insert(0, './transformers_4_35_0')
# from transformers_4_35_0 import AutoProcessor, AutoModelForVision2Seq

import cv2
import ast

colors = [
    (0, 255, 0),
    (0, 0, 255),
    (255, 255, 0),
    (255, 0, 255),
    (0, 255, 255),
    (114, 128, 250),
    (0, 165, 255),
    (0, 128, 0),
    (144, 238, 144),
    (238, 238, 175),
    (255, 191, 0),
    (0, 128, 0),
    (226, 43, 138),
    (255, 0, 255),
    (0, 215, 255),
    (255, 0, 0),    
]

color_map = {
    f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for color_id, color in enumerate(colors)
}


def is_overlapping(rect1, rect2):
    x1, y1, x2, y2 = rect1
    x3, y3, x4, y4 = rect2
    return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)


def draw_entity_boxes_on_image(image, entities, show=False, save_path=None, entity_index=-1):
    """_summary_
    Args:
        image (_type_): image or image path
        collect_entity_location (_type_): _description_
    """
    if isinstance(image, Image.Image):
        image_h = image.height
        image_w = image.width
        image = np.array(image)[:, :, [2, 1, 0]]
    elif isinstance(image, str):
        if os.path.exists(image):
            pil_img = Image.open(image).convert("RGB")
            image = np.array(pil_img)[:, :, [2, 1, 0]]
            image_h = pil_img.height
            image_w = pil_img.width
        else:
            raise ValueError(f"invaild image path, {image}")
    elif isinstance(image, torch.Tensor):
        # pdb.set_trace()
        image_tensor = image.cpu()
        reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
        reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
        image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
        pil_img = torchvision_T.ToPILImage()(image_tensor)
        image_h = pil_img.height
        image_w = pil_img.width
        image = np.array(pil_img)[:, :, [2, 1, 0]]
    else:
        raise ValueError(f"invaild image format, {type(image)} for {image}")
    
    if len(entities) == 0:
        return image

    indices = list(range(len(entities)))
    if entity_index >= 0:
        indices = [entity_index]

    # Not to show too many bboxes
    entities = entities[:len(color_map)]
    
    new_image = image.copy()
    previous_bboxes = []
    # size of text
    text_size = 1
    # thickness of text
    text_line = 1  # int(max(1 * min(image_h, image_w) / 512, 1))
    box_line = 3
    (c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
    base_height = int(text_height * 0.675)
    text_offset_original = text_height - base_height
    text_spaces = 3

    # num_bboxes = sum(len(x[-1]) for x in entities)
    used_colors = colors  # random.sample(colors, k=num_bboxes)

    color_id = -1
    for entity_idx, (entity_name, (start, end), bboxes) in enumerate(entities):
        color_id += 1
        if entity_idx not in indices:
            continue
        for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
            # if start is None and bbox_id > 0:
            #     color_id += 1
            orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)

            # draw bbox
            # random color
            color = used_colors[color_id]  # tuple(np.random.randint(0, 255, size=3).tolist())
            new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)

            l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1

            x1 = orig_x1 - l_o
            y1 = orig_y1 - l_o

            if y1 < text_height + text_offset_original + 2 * text_spaces:
                y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
                x1 = orig_x1 + r_o

            # add text background
            (text_width, text_height), _ = cv2.getTextSize(f"  {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
            text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1

            for prev_bbox in previous_bboxes:
                while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
                    text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
                    text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
                    y1 += (text_height + text_offset_original + 2 * text_spaces)

                    if text_bg_y2 >= image_h:
                        text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
                        text_bg_y2 = image_h
                        y1 = image_h
                        break

            alpha = 0.5
            for i in range(text_bg_y1, text_bg_y2):
                for j in range(text_bg_x1, text_bg_x2):
                    if i < image_h and j < image_w:
                        if j < text_bg_x1 + 1.35 * c_width:
                            # original color
                            bg_color = color
                        else:
                            # white
                            bg_color = [255, 255, 255]
                        new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8)

            cv2.putText(
                new_image, f"  {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
            )
            # previous_locations.append((x1, y1))
            previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))

    pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
    if save_path:
        pil_image.save(save_path)
    if show:
        pil_image.show()

    return pil_image

def load_kosmos_model(device):
    ckpt = "ydshieh/kosmos-2-patch14-224"
    kosmos_model = AutoModelForVision2Seq.from_pretrained(ckpt, trust_remote_code=True).to(device)
    kosmos_processor = AutoProcessor.from_pretrained(ckpt, trust_remote_code=True)
    return kosmos_model, kosmos_processor

def kosmos_generate_predictions(image_input, text_input, kosmos_model, kosmos_processor):
    if kosmos_model is None:
        return None, None, None

    # Save the image and load it again to match the original Kosmos-2 demo.
    # (https://github.com/microsoft/unilm/blob/f4695ed0244a275201fff00bee495f76670fbe70/kosmos-2/demo/gradio_app.py#L345-L346)
    user_image_path = "/tmp/user_input_test_image.jpg"
    image_input.save(user_image_path)
    # This might give different results from the original argument `image_input`
    image_input = Image.open(user_image_path)

    if text_input == "Brief":
        text_input = "<grounding>An image of"
    elif text_input == "Detailed":
        text_input = "<grounding>Describe this image in detail:"
    else:
        text_input = f"<grounding>{text_input}"

    inputs = kosmos_processor(text=text_input, images=image_input, return_tensors="pt")

    generated_ids = kosmos_model.generate(
        pixel_values=inputs["pixel_values"].to("cuda"),
        input_ids=inputs["input_ids"][:, :-1].to("cuda"),
        attention_mask=inputs["attention_mask"][:, :-1].to("cuda"),
        img_features=None,
        img_attn_mask=inputs["img_attn_mask"][:, :-1].to("cuda"),
        use_cache=True,
        max_new_tokens=128,
    )
    generated_text = kosmos_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

    # By default, the generated  text is cleanup and the entities are extracted.
    processed_text, entities = kosmos_processor.post_process_generation(generated_text)

    annotated_image = draw_entity_boxes_on_image(image_input, entities, show=False)

    color_id = -1
    entity_info = []
    filtered_entities = []
    for entity in entities:
        entity_name, (start, end), bboxes = entity
        if start == end:
            # skip bounding bbox without a `phrase` associated
            continue
        color_id += 1
        # for bbox_id, _ in enumerate(bboxes):
            # if start is None and bbox_id > 0:
            #     color_id += 1
        entity_info.append(((start, end), color_id))
        filtered_entities.append(entity)

    colored_text = []
    prev_start = 0
    end = 0
    for idx, ((start, end), color_id) in enumerate(entity_info):
        if start > prev_start:
            colored_text.append((processed_text[prev_start:start], None))
        colored_text.append((processed_text[start:end], f"{color_id}"))
        prev_start = end

    if end < len(processed_text):
        colored_text.append((processed_text[end:len(processed_text)], None))

    return annotated_image, colored_text, str(filtered_entities)