Spaces:
Runtime error
Runtime error
File size: 82,999 Bytes
f8f5cdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import math
from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
import torch
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
logger = get_logger(__name__)
LOGITS_PROCESSOR_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
search or log softmax for each vocabulary token when using beam search
Return:
`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.
"""
class LogitsProcessor:
"""Abstract base class for all logit processors that can be applied during generation."""
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
)
class LogitsWarper:
"""Abstract base class for all logit warpers that can be applied during generation with multinomial sampling."""
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
)
class LogitsProcessorList(list):
"""
This class can be used to create a list of [`LogitsProcessor`] or [`LogitsWarper`] to subsequently process a
`scores` input tensor. This class inherits from list and adds a specific *__call__* method to apply each
[`LogitsProcessor`] or [`LogitsWarper`] to the inputs.
"""
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.FloatTensor:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
beam search or log softmax for each vocabulary token when using beam search
kwargs (`Dict[str, Any]`, *optional*):
Additional kwargs that are specific to a logits processor.
Return:
`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`:
The processed prediction scores.
"""
for processor in self:
function_args = inspect.signature(processor.__call__).parameters
if len(function_args) > 2:
if not all(arg in kwargs for arg in list(function_args.keys())[2:]):
raise ValueError(
f"Make sure that all the required parameters: {list(function_args.keys())} for "
f"{processor.__class__} are passed to the logits processor."
)
scores = processor(input_ids, scores, **kwargs)
else:
scores = processor(input_ids, scores)
return scores
class MinLengthLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] enforcing a min-length by setting EOS probability to 0.
Args:
min_length (`int`):
The minimum length below which the score of `eos_token_id` is set to `-float("Inf")`.
eos_token_id (`Union[int, List[int]]`):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
"""
def __init__(self, min_length: int, eos_token_id: Union[int, List[int]]):
if not isinstance(min_length, int) or min_length < 0:
raise ValueError(f"`min_length` has to be a non-negative integer, but is {min_length}")
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
if not all(isinstance(i, int) for i in eos_token_id) or any(i < 0 for i in eos_token_id):
logger.warning(f"`eos_token_id` has to be a list of positive integers, but is {eos_token_id}")
self.min_length = min_length
self.eos_token_id = eos_token_id
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
cur_len = input_ids.shape[-1]
if cur_len < self.min_length:
for i in self.eos_token_id:
scores[:, i] = -float("inf")
return scores
class MinNewTokensLengthLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] enforcing a min-length of new tokens by setting EOS (End-Of-Sequence) token probability to 0.
Note that for decoder-only models, such as Llama2, `min_length` will compute the length of `prompt + newly
generated tokens` whereas for other models it will behave as `min_new_tokens`, that is, taking only into account
the newly generated ones.
Args:
prompt_length_to_skip (`int`):
The input tokens length. Not a valid argument when used with `generate` as it will automatically assign the
input length.
min_new_tokens (`int`):
The minimum *new* tokens length below which the score of `eos_token_id` is set to `-float("Inf")`.
eos_token_id (`Union[int, List[int]]`):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> model.config.pad_token_id = model.config.eos_token_id
>>> inputs = tokenizer(["Hugging Face Company is"], return_tensors="pt")
>>> # If the maximum length (default = 20) is smaller than the minimum length constraint, the latter is ignored!
>>> outputs = model.generate(**inputs, min_new_tokens=30)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Hugging Face Company is a company that has been working on a new product for the past year.
>>> # For testing purposes, let's set `eos_token` to `"company"`, the first generated token. This will make
>>> # generation end there.
>>> outputs = model.generate(**inputs, eos_token_id=1664)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Hugging Face Company is a company
>>> # Increasing `min_new_tokens` will make generation ignore occurences `"company"` (eos token) before the
>>> # minimum length condition is honored.
>>> outputs = model.generate(**inputs, min_new_tokens=2, eos_token_id=1664)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Hugging Face Company is a new company
```
"""
def __init__(self, prompt_length_to_skip: int, min_new_tokens: int, eos_token_id: Union[int, List[int]]):
for arg_name, arg_value in [
("prompt_length_to_skip", prompt_length_to_skip),
("min_new_tokens", min_new_tokens),
]:
if not isinstance(arg_value, int) or arg_value < 0:
raise ValueError(f"`{arg_name}` has to be a positive integer, but is {arg_value}")
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
if not all(isinstance(i, int) for i in eos_token_id) or any(i < 0 for i in eos_token_id):
logger.warning(f"`eos_token_id` has to be a list of positive integers, but is {eos_token_id}")
self.prompt_length_to_skip = prompt_length_to_skip
self.min_new_tokens = min_new_tokens
self.eos_token_id = eos_token_id
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
new_tokens_length = input_ids.shape[-1] - self.prompt_length_to_skip
if new_tokens_length < self.min_new_tokens:
for i in self.eos_token_id:
scores[:, i] = -float("inf")
return scores
class TemperatureLogitsWarper(LogitsWarper):
r"""
[`LogitsWarper`] for temperature (exponential scaling output probability distribution), which effectively means
that it can control the randomness of the predicted tokens.
<Tip>
Make sure that `do_sample=True` is included in the `generate` arguments otherwise the temperature value won't have
any effect.
</Tip>
Args:
temperature (`float`):
Strictly positive float value used to modulate the logits distribution. A value smaller than `1` decreases
randomness (and vice versa), with `0` being equivalent to shifting all probability mass to the most likely
token.
Examples:
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> set_seed(0) # for reproducibility
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> model.config.pad_token_id = model.config.eos_token_id
>>> inputs = tokenizer(["Hugging Face Company is"], return_tensors="pt")
>>> # With temperature=1.0, the default, we consistently get random outputs due to random sampling.
>>> generate_kwargs = {"max_new_tokens": 10, "do_sample": True, "temperature": 1.0, "num_return_sequences": 2}
>>> outputs = model.generate(**inputs, **generate_kwargs)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['Hugging Face Company is a joint venture between GEO Group, one of',
'Hugging Face Company is not an exact science – but what we believe does']
>>> # However, with temperature close to 0, it approximates greedy decoding strategies (invariant)
>>> generate_kwargs["temperature"] = 0.0001
>>> outputs = model.generate(**inputs, **generate_kwargs)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['Hugging Face Company is a company that has been around for over 20 years',
'Hugging Face Company is a company that has been around for over 20 years']
```
"""
def __init__(self, temperature: float):
if not isinstance(temperature, float) or not (temperature > 0):
except_msg = (
f"`temperature` (={temperature}) has to be a strictly positive float, otherwise your next token "
"scores will be invalid."
)
if isinstance(temperature, float) and temperature == 0.0:
except_msg += " If you're looking for greedy decoding strategies, set `do_sample=False`."
raise ValueError(except_msg)
self.temperature = temperature
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
scores = scores / self.temperature
return scores
class RepetitionPenaltyLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that prevents the repetition of previous tokens through an exponential penalty. This technique
shares some similarities with coverage mechanisms and other aimed at reducing repetition. During the text
generation process, the probability distribution for the next token is determined using a formula that incorporates
token scores based on their occurrence in the generated sequence. Tokens with higher scores are more likely to be
selected. The formula can be seen in the original [paper](https://arxiv.org/pdf/1909.05858.pdf). According to the
paper a penalty of around 1.2 yields a good balance between truthful generation and lack of repetition.
Args:
repetition_penalty (`float`):
The parameter for repetition penalty. 1.0 means no penalty. See [this
paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
Examples:
```py
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> # Initializing the model and tokenizer for it
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> inputs = tokenizer(["I'm not going to"], return_tensors="pt")
>>> # This shows a normal generate without any specific parameters
>>> summary_ids = model.generate(**inputs)
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True)[0])
I'm not going to be able to do that. I'm going to be able to do that
>>> # This generates a penalty for repeated tokens
>>> penalized_ids = model.generate(**inputs, repetition_penalty=1.1)
>>> print(tokenizer.batch_decode(penalized_ids, skip_special_tokens=True)[0])
I'm not going to be able to do that. I'll just have to go out and play
```
"""
def __init__(self, penalty: float):
if not isinstance(penalty, float) or not (penalty > 0):
raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")
self.penalty = penalty
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
score = torch.gather(scores, 1, input_ids)
# if score < 0 then repetition penalty has to be multiplied to reduce the previous token probability
score = torch.where(score < 0, score * self.penalty, score / self.penalty)
scores.scatter_(1, input_ids, score)
return scores
class EncoderRepetitionPenaltyLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] enforcing an exponential penalty on tokens that are not in the original input.
Args:
hallucination_penalty (`float`):
The parameter for hallucination penalty. 1.0 means no penalty.
encoder_input_ids (`torch.LongTensor`):
The encoder_input_ids that should be repeated within the decoder ids.
"""
def __init__(self, penalty: float, encoder_input_ids: torch.LongTensor):
if not isinstance(penalty, float) or not (penalty > 0):
raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")
self.penalty = 1 / penalty
self.encoder_input_ids = encoder_input_ids
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
score = torch.gather(scores, 1, self.encoder_input_ids)
# if score < 0 then repetition penalty has to be multiplied to reduce the previous token probability
score = torch.where(score < 0, score * self.penalty, score / self.penalty)
scores.scatter_(1, self.encoder_input_ids, score)
return scores
class TopPLogitsWarper(LogitsWarper):
"""
[`LogitsWarper`] that performs top-p, i.e. restricting to top tokens summing to prob_cut_off <= prob_cut_off.
Args:
top_p (`float`):
If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
higher are kept for generation.
filter_value (`float`, *optional*, defaults to -inf):
All filtered values will be set to this float value.
min_tokens_to_keep (`int`, *optional*, defaults to 1):
Minimum number of tokens that cannot be filtered.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> set_seed(0)
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> inputs = tokenizer("A sequence: 1, 2", return_tensors="pt")
>>> # With sampling, the output is unexpected -- sometimes too unexpected.
>>> outputs = model.generate(**inputs, do_sample=True)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 0, 2, 2. 2, 2, 2, 2
>>> # With `top_p` sampling, the output gets restricted to high-probability tokens.
>>> # Pro tip: In practice, LLMs use `top_p` in the 0.9-0.95 range.
>>> outputs = model.generate(**inputs, do_sample=True, top_p=0.1)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9
```
"""
def __init__(self, top_p: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
top_p = float(top_p)
if top_p < 0 or top_p > 1.0:
raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}")
if not isinstance(min_tokens_to_keep, int) or (min_tokens_to_keep < 1):
raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}")
self.top_p = top_p
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
sorted_logits, sorted_indices = torch.sort(scores, descending=False)
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
# Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs <= (1 - self.top_p)
# Keep at least min_tokens_to_keep
sorted_indices_to_remove[..., -self.min_tokens_to_keep :] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class TopKLogitsWarper(LogitsWarper):
r"""
[`LogitsWarper`] that performs top-k, i.e. restricting to the k highest probability elements.
Args:
top_k (`int`):
The number of highest probability vocabulary tokens to keep for top-k-filtering.
filter_value (`float`, *optional*, defaults to -inf):
All filtered values will be set to this float value.
min_tokens_to_keep (`int`, *optional*, defaults to 1):
Minimum number of tokens that cannot be filtered.
"""
def __init__(self, top_k: int, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
if not isinstance(top_k, int) or top_k <= 0:
raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}")
self.top_k = max(top_k, min_tokens_to_keep)
self.filter_value = filter_value
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
top_k = min(self.top_k, scores.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = scores < torch.topk(scores, top_k)[0][..., -1, None]
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class TypicalLogitsWarper(LogitsWarper):
r"""
[`LogitsWarper`] that performs typical decoding. See [Typical Decoding for Natural Language
Generation](https://arxiv.org/abs/2202.00666) for more information.
Args:
mass (`float`, *optional*, defaults to 0.9):
Value of typical_p between 0 and 1 inclusive, defaults to 0.9.
filter_value (`float`, *optional*, defaults to -inf):
All filtered values will be set to this float value.
min_tokens_to_keep (`int`, *optional*, defaults to 1):
Minimum number of tokens that cannot be filtered.
"""
def __init__(self, mass: float = 0.9, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
mass = float(mass)
if not (mass > 0 and mass < 1):
raise ValueError(f"`typical_p` has to be a float > 0 and < 1, but is {mass}")
if not isinstance(min_tokens_to_keep, int) or (min_tokens_to_keep < 1):
raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}")
self.filter_value = filter_value
self.mass = mass
self.min_tokens_to_keep = min_tokens_to_keep
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# calculate entropy
normalized = torch.nn.functional.log_softmax(scores, dim=-1)
p = torch.exp(normalized)
ent = -(normalized * p).nansum(-1, keepdim=True)
# shift and sort
shifted_scores = torch.abs((-normalized) - ent)
sorted_scores, sorted_indices = torch.sort(shifted_scores, descending=False)
sorted_logits = scores.gather(-1, sorted_indices)
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
# Remove tokens with cumulative mass above the threshold
last_ind = (cumulative_probs < self.mass).sum(dim=1)
last_ind[last_ind < 0] = 0
sorted_indices_to_remove = sorted_scores > sorted_scores.gather(1, last_ind.view(-1, 1))
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class EpsilonLogitsWarper(LogitsWarper):
r"""
[`LogitsWarper`] that performs epsilon-sampling, i.e. restricting to tokens with `prob >= epsilon`. Takes the
largest min_tokens_to_keep tokens if no tokens satisfy this constraint. See [Truncation Sampling as Language Model
Desmoothing](https://arxiv.org/abs/2210.15191) for more information.
Args:
epsilon (`float`):
If set to > 0, only the most tokens with probabilities `epsilon` or higher are kept for generation.
filter_value (`float`, *optional*, defaults to -inf):
All filtered values will be set to this float value.
min_tokens_to_keep (`int`, *optional*, defaults to 1):
Minimum number of tokens that cannot be filtered.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> set_seed(0)
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> inputs = tokenizer("A sequence: 1, 2", return_tensors="pt")
>>> # With sampling, the output is unexpected -- sometimes too unexpected.
>>> outputs = model.generate(**inputs, do_sample=True)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 0, 2, 2. 2, 2, 2, 2
>>> # With epsilon sampling, the output gets restricted to high-probability tokens. Note that this is similar to
>>> # Top P sampling, which restricts tokens based on their cumulative probability.
>>> # Pro tip: The paper recomends using `epsilon_cutoff` values between 3e-4 and 9e-4
>>> outputs = model.generate(**inputs, do_sample=True, epsilon_cutoff=0.1)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9
```
"""
def __init__(self, epsilon: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
epsilon = float(epsilon)
if epsilon <= 0 or epsilon >= 1:
raise ValueError(f"`epsilon_cutoff` has to be a float > 0 and < 1, but is {epsilon}")
min_tokens_to_keep = int(min_tokens_to_keep)
if min_tokens_to_keep < 1:
raise ValueError(
f"`min_tokens_to_keep` has to be a strictly positive integer, but is {min_tokens_to_keep}"
)
self.epsilon = epsilon
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# Determine which indices to remove
probabilities = scores.softmax(dim=-1)
indices_to_remove = probabilities < self.epsilon
# Keep the words with the 'min_tokens_to_keep'-highest probabilities
top_k = min(self.min_tokens_to_keep, scores.size(-1)) # Safety check
indices_to_remove = indices_to_remove & (scores < torch.topk(scores, top_k)[0][..., -1, None])
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class EtaLogitsWarper(LogitsWarper):
r"""
[`LogitsWarper`] that performs eta-sampling, a technique to filter out tokens with probabilities below a dynamic
cutoff value, `eta`, which is calculated based on a combination of the hyperparameter `epsilon` and the entropy of
the token probabilities, i.e. `eta := min(epsilon, sqrt(epsilon * e^-entropy(probabilities)))`. Takes the largest
min_tokens_to_keep tokens if no tokens satisfy this constraint. It addresses the issue of poor quality in long
samples of text generated by neural language models leading to more coherent and fluent text. See [Truncation
Sampling as Language Model Desmoothing](https://arxiv.org/abs/2210.15191) for more information. Note: `do_sample`
must be set to `True` for this `LogitsWarper` to work.
Args:
epsilon (`float`):
A float value in the range (0, 1). Hyperparameter used to calculate the dynamic cutoff value, `eta`. The
suggested values from the paper ranges from 3e-4 to 4e-3 depending on the size of the model.
filter_value (`float`, *optional*, defaults to -inf):
All values that are found to be below the dynamic cutoff value, `eta`, are set to this float value. This
parameter is useful when logits need to be modified for very low probability tokens that should be excluded
from generation entirely.
min_tokens_to_keep (`int`, *optional*, defaults to 1):
Specifies the minimum number of tokens that must be kept for generation, regardless of their probabilities.
For example, if `min_tokens_to_keep` is set to 1, at least one token will always be kept for generation,
even if all tokens have probabilities below the cutoff `eta`.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> set_seed(0)
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> inputs = tokenizer("A sequence: 1, 2", return_tensors="pt")
>>> # With sampling, the output is unexpected -- sometimes too unexpected.
>>> outputs = model.generate(**inputs, do_sample=True)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 0, 2, 2. 2, 2, 2, 2
>>> # With eta sampling, the output gets restricted to high-probability tokens. You can see it as a dynamic form of
>>> # epsilon sampling that adapts its cutoff probability based on the entropy (high entropy = lower cutoff).
>>> # Pro tip: The paper recomends using `eta_cutoff` values between 3e-4 to 4e-3
>>> outputs = model.generate(**inputs, do_sample=True, eta_cutoff=0.1)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9
```
"""
def __init__(self, epsilon: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
epsilon = float(epsilon)
if epsilon <= 0 or epsilon >= 1:
raise ValueError(f"`eta_cutoff` has to be a float > 0 and < 1, but is {epsilon}")
min_tokens_to_keep = int(min_tokens_to_keep)
if min_tokens_to_keep < 1:
raise ValueError(
f"`min_tokens_to_keep` has to be a strictly positive integer, but is {min_tokens_to_keep}"
)
self.epsilon = torch.tensor(epsilon)
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# Calculate the adaptive cutoff
probabilities = scores.softmax(dim=-1)
entropy = torch.distributions.Categorical(logits=scores).entropy()
eta = torch.min(self.epsilon, torch.sqrt(self.epsilon) * torch.exp(-entropy))[..., None]
indices_to_remove = probabilities < eta
# Keep the words with the 'min_tokens_to_keep'-highest probabilities
top_k = min(self.min_tokens_to_keep, scores.size(-1)) # Safety check
indices_to_remove = indices_to_remove & (scores < torch.topk(scores, top_k)[0][..., -1, None])
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
def _get_ngrams(ngram_size: int, prev_input_ids: torch.Tensor, num_hypos: int):
"""
Assume ngram_size=2 and prev_input_ids=tensor([[40, 2883, 2712, 4346]]). The output of generated ngrams look like
this {(40,): [2883], (2883,): [2712], (2712,): [4346]}.
Args:
ngram_size (`int`):
The number sequential tokens taken as a group which may only occur once before being banned.
prev_input_ids (`torch.Tensor`):
Generated token ids for the current hypothesis.
num_hypos (`int`):
The number of hypotheses for which n-grams need to be generated.
Returns:
generated_ngrams (`dict`):
Dictionary of generated ngrams.
"""
# Initialize an empty list of dictionaries, one for each hypothesis (index) in the range of num_hypos
generated_ngrams = [{} for _ in range(num_hypos)]
for idx in range(num_hypos):
gen_tokens = prev_input_ids[idx].tolist()
generated_ngram = generated_ngrams[idx]
# Loop through each n-gram of size ngram_size in the list of tokens (gen_tokens)
for ngram in zip(*[gen_tokens[i:] for i in range(ngram_size)]):
prev_ngram_tuple = tuple(ngram[:-1])
generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]]
return generated_ngrams
def _get_generated_ngrams(banned_ngrams, prev_input_ids, ngram_size, cur_len):
"""
Determines the banned tokens for the current hypothesis based on previously generated n-grams.
Args:
banned_ngrams (`dict`):
A dictionary containing previously generated n-grams for each hypothesis.
prev_input_ids (`torch.Tensor`):
Generated token ids for the current hypothesis.
ngram_size (`int`):
The number sequential tokens taken as a group which may only occur once before being banned.
cur_len (`int`):
The current length of the token sequences for which the n-grams are being checked.
Returns:
List of tokens that are banned.
"""
# Before decoding the next token, prevent decoding of ngrams that have already appeared
start_idx = cur_len + 1 - ngram_size
ngram_idx = tuple(prev_input_ids[start_idx:cur_len].tolist())
return banned_ngrams.get(ngram_idx, [])
def _calc_banned_ngram_tokens(
ngram_size: int, prev_input_ids: torch.Tensor, num_hypos: int, cur_len: int
) -> List[Iterable[int]]:
"""Copied from fairseq for no_repeat_ngram in beam_search"""
if cur_len + 1 < ngram_size:
# return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet
return [[] for _ in range(num_hypos)]
generated_ngrams = _get_ngrams(ngram_size, prev_input_ids, num_hypos)
banned_tokens = [
_get_generated_ngrams(generated_ngrams[hypo_idx], prev_input_ids[hypo_idx], ngram_size, cur_len)
for hypo_idx in range(num_hypos)
]
return banned_tokens
class NoRepeatNGramLogitsProcessor(LogitsProcessor):
r"""
N-grams are groups of "n" consecutive words, characters, or tokens taken from a sequence of text. Given the
sentence: "She runs fast", the bi-grams (n=2) would be ("she", "runs") and ("runs", "fast"). In text generation,
avoiding repetitions of word sequences provides a more diverse output. This [`LogitsProcessor`] enforces no
repetition of n-grams by setting the scores of banned tokens to negative infinity which eliminates those tokens
from consideration when further processing the scores.
[Fairseq](https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345).
<Tip>
Use n-gram penalties with care. For instance, penalizing 2-grams (bigrams) in an article about the city of New York
might lead to undesirable outcomes where the city's name appears only once in the entire text.
[Reference](https://huggingface.co./blog/how-to-generate)
</Tip>
Args:
ngram_size (`int`):
All ngrams of size `ngram_size` can only occur once.
Examples:
```py
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> inputs = tokenizer(["Today I"], return_tensors="pt")
>>> output = model.generate(**inputs)
>>> print(tokenizer.decode(output[0], skip_special_tokens=True))
Today I’m not sure if I’m going to be able to do it.
>>> # Now let's add ngram size using `no_repeat_ngram_size`. This stops the repetitions ("I’m") in the output.
>>> output = model.generate(**inputs, no_repeat_ngram_size=2)
>>> print(tokenizer.decode(output[0], skip_special_tokens=True))
Today I’m not sure if I can get a better understanding of the nature of this issue
```
"""
def __init__(self, ngram_size: int):
if not isinstance(ngram_size, int) or ngram_size <= 0:
raise ValueError(f"`ngram_size` has to be a strictly positive integer, but is {ngram_size}")
self.ngram_size = ngram_size
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
num_batch_hypotheses = scores.shape[0]
cur_len = input_ids.shape[-1]
banned_batch_tokens = _calc_banned_ngram_tokens(self.ngram_size, input_ids, num_batch_hypotheses, cur_len)
for i, banned_tokens in enumerate(banned_batch_tokens):
scores[i, banned_tokens] = -float("inf")
return scores
class EncoderNoRepeatNGramLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that enforces no repetition of encoder input ids n-grams for the decoder ids. See
[ParlAI](https://github.com/facebookresearch/ParlAI/blob/master/parlai/core/torch_generator_agent.py#L1350).
Args:
encoder_ngram_size (`int`):
All ngrams of size `ngram_size` can only occur within the encoder input ids.
encoder_input_ids (`int`):
The encoder_input_ids that should not be repeated within the decoder ids.
"""
def __init__(self, encoder_ngram_size: int, encoder_input_ids: torch.LongTensor):
if not isinstance(encoder_ngram_size, int) or encoder_ngram_size <= 0:
raise ValueError(
f"`encoder_ngram_size` has to be a strictly positive integer, but is {encoder_ngram_size}"
)
self.ngram_size = encoder_ngram_size
if len(encoder_input_ids.shape) == 1:
encoder_input_ids = encoder_input_ids.unsqueeze(0)
self.batch_size = encoder_input_ids.shape[0]
self.generated_ngrams = _get_ngrams(encoder_ngram_size, encoder_input_ids, self.batch_size)
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# B x num_beams
num_hypos = scores.shape[0]
num_beams = num_hypos // self.batch_size
cur_len = input_ids.shape[-1]
banned_batch_tokens = [
_get_generated_ngrams(
self.generated_ngrams[hypo_idx // num_beams], input_ids[hypo_idx], self.ngram_size, cur_len
)
for hypo_idx in range(num_hypos)
]
for i, banned_tokens in enumerate(banned_batch_tokens):
scores[i, banned_tokens] = -float("inf")
return scores
class SequenceBiasLogitsProcessor(LogitsProcessor):
"""
[`LogitsProcessor`] that applies an additive bias on sequences. The bias is applied to the last token of a sequence
when the next generated token can complete it. Consequently, to take the most of biasing sequences with more than
one token, consider using beam methods (to gracefully work around partially completed sequences that have a
negative bias) and applying the bias to their prefixes (to ensure the bias is applied earlier).
<Tip>
In order to get the token ids of the sequences that you want to bias, make sure to set `add_prefix_space=True` when
initializing the tokenizer, and use `tokenizer(bad_words, add_special_tokens=False).input_ids`. The
`add_prefix_space` argument is only supported for some slow tokenizers, as fast tokenizers' prefixing behaviours
come from `pre tokenizers`. Read more [here](https://huggingface.co./docs/tokenizers/api/pre-tokenizers).
</Tip>
Args:
sequence_bias (`Dict[Tuple[int], float]`):
Dictionary that maps a sequence of tokens to its bias term. Positive biases increase the odds of the
sequence being selected, while negative biases do the opposite. If a sequence has a length of 1, its bias
will always be applied. Otherwise, the bias will only be applied if the sequence in question is about to be
completed (in the token selection step after this processor is applied).
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> inputs = tokenizer(["The full name of Donald is Donald"], return_tensors="pt")
>>> summary_ids = model.generate(inputs["input_ids"], max_new_tokens=4)
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True)[0])
The full name of Donald is Donald J. Trump Jr
>>> # Now let's control generation through a bias. Please note that the tokenizer is initialized differently!
>>> tokenizer_with_prefix_space = AutoTokenizer.from_pretrained("gpt2", add_prefix_space=True)
>>> def get_tokens_as_tuple(word):
... return tuple(tokenizer_with_prefix_space([word], add_special_tokens=False).input_ids[0])
>>> # If we add a negative bias without beam search, it may become "stuck" in a prefix without good continuations
>>> sequence_bias = {get_tokens_as_tuple("Trump"): -10.0}
>>> biased_ids = model.generate(inputs["input_ids"], max_new_tokens=4, sequence_bias=sequence_bias)
>>> print(tokenizer.batch_decode(biased_ids, skip_special_tokens=True)[0])
The full name of Donald is Donald J. Donald,
>>> biased_ids = model.generate(inputs["input_ids"], max_new_tokens=4, num_beams=4, sequence_bias=sequence_bias)
>>> print(tokenizer.batch_decode(biased_ids, skip_special_tokens=True)[0])
The full name of Donald is Donald Rumsfeld,
>>> # We can also add a positive bias to nudge the model towards specific tokens or continuations
>>> sequence_bias = {get_tokens_as_tuple("Donald Duck"): 10.0}
>>> biased_ids = model.generate(inputs["input_ids"], max_new_tokens=4, num_beams=4, sequence_bias=sequence_bias)
>>> print(tokenizer.batch_decode(biased_ids, skip_special_tokens=True)[0])
The full name of Donald is Donald Duck.
```
"""
def __init__(self, sequence_bias: Dict[Tuple[int], float]):
self.sequence_bias = sequence_bias
self._validate_arguments()
# Bias variables that will be populated on the first call (for retrocompatibility purposes, the vocabulary size
# is infered in the first usage, which inhibits initializing here)
self.length_1_bias = None
self.prepared_bias_variables = False
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# 1 - Prepares the bias tensors. This is only needed the first time the logit processor is called.
if not self.prepared_bias_variables:
self._prepare_bias_variables(scores)
# 2 - prepares an empty bias to add
bias = torch.zeros_like(scores)
# 3 - include the bias from length = 1
bias += self.length_1_bias
# 4 - include the bias from length > 1, after determining which biased sequences may be completed.
for sequence_ids, sequence_bias in self.sequence_bias.items():
if len(sequence_ids) == 1: # the sequence is of length 1, already applied
continue
if len(sequence_ids) > input_ids.shape[1]: # the sequence is longer than the context, ignore
continue
prefix_length = len(sequence_ids) - 1
last_token = sequence_ids[-1]
matching_rows = torch.eq(
input_ids[:, -prefix_length:],
torch.tensor(sequence_ids[:-1], dtype=input_ids.dtype, device=input_ids.device),
).prod(dim=1)
bias[:, last_token] += torch.where(
matching_rows.bool(),
torch.tensor(sequence_bias, device=input_ids.device),
torch.tensor(0.0, device=input_ids.device),
)
# 5 - apply the bias to the scores
scores = scores + bias
return scores
def _prepare_bias_variables(self, scores: torch.FloatTensor):
vocabulary_size = scores.shape[-1]
# Check biased tokens out of bounds
invalid_biases = []
for sequence_ids in self.sequence_bias:
for token_id in sequence_ids:
if token_id >= vocabulary_size:
invalid_biases.append(token_id)
if len(invalid_biases) > 0:
raise ValueError(
f"The model vocabulary size is {vocabulary_size}, but the following tokens were being biased: "
f"{invalid_biases}"
)
# Precompute the bias tensors to be applied. Sequences of length 1 are kept separately, as they can be applied
# with simpler logic.
self.length_1_bias = torch.zeros((vocabulary_size,), dtype=torch.float).to(scores.device)
for sequence_ids, bias in self.sequence_bias.items():
if len(sequence_ids) == 1:
self.length_1_bias[sequence_ids[-1]] = bias
self.prepared_bias_variables = True
def _validate_arguments(self):
sequence_bias = self.sequence_bias
if not isinstance(sequence_bias, dict) or len(sequence_bias) == 0:
raise ValueError(f"`sequence_bias` has to be a non-empty dictionary, but is {sequence_bias}.")
if any(not isinstance(sequence_ids, tuple) for sequence_ids in sequence_bias.keys()):
raise ValueError(f"`sequence_bias` has to be a dict with tuples as keys, but is {sequence_bias}.")
if any(
any((not isinstance(token_id, (int, np.integer)) or token_id < 0) for token_id in sequence_ids)
or len(sequence_ids) == 0
for sequence_ids in sequence_bias.keys()
):
raise ValueError(
f"Each key in `sequence_bias` has to be a non-empty tuple of positive integers, but is "
f"{sequence_bias}."
)
if any(not isinstance(bias, float) for bias in sequence_bias.values()):
raise ValueError(f"`sequence_bias` has to be a dict with floats as values, but is {sequence_bias}.")
class NoBadWordsLogitsProcessor(SequenceBiasLogitsProcessor):
"""
[`LogitsProcessor`] that enforces that specified sequences will never be selected.
<Tip>
In order to get the token ids of the words that should not appear in the generated text, make sure to set
`add_prefix_space=True` when initializing the tokenizer, and use `tokenizer(bad_words,
add_special_tokens=False).input_ids`. The `add_prefix_space` argument is only supported for some slow tokenizers,
as fast tokenizers' prefixing behaviours come from `pre tokenizers`. Read more
[here](https://huggingface.co./docs/tokenizers/api/pre-tokenizers).
</Tip>
Args:
bad_words_ids (`List[List[int]]`):
List of list of token ids that are not allowed to be generated.
eos_token_id (`Union[int, List[int]]`):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> inputs = tokenizer(["In a word, the cake is a"], return_tensors="pt")
>>> output_ids = model.generate(inputs["input_ids"], max_new_tokens=5, pad_token_id=tokenizer.eos_token_id)
>>> print(tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0])
In a word, the cake is a bit of a mess.
>>> # Now let's take the bad words out. Please note that the tokenizer is initialized differently
>>> tokenizer_with_prefix_space = AutoTokenizer.from_pretrained("gpt2", add_prefix_space=True)
>>> def get_tokens_as_list(word_list):
... "Converts a sequence of words into a list of tokens"
... tokens_list = []
... for word in word_list:
... tokenized_word = tokenizer_with_prefix_space([word], add_special_tokens=False).input_ids[0]
... tokens_list.append(tokenized_word)
... return tokens_list
>>> bad_words_ids = get_tokens_as_list(word_list=["mess"])
>>> output_ids = model.generate(
... inputs["input_ids"], max_new_tokens=5, bad_words_ids=bad_words_ids, pad_token_id=tokenizer.eos_token_id
... )
>>> print(tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0])
In a word, the cake is a bit of a surprise.
```
"""
def __init__(self, bad_words_ids: List[List[int]], eos_token_id: Union[int, List[int]]):
self.bad_word_ids = bad_words_ids
self._validate_arguments()
# Filter EOS token from bad_words_ids
if eos_token_id is None:
eos_token_id = []
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
bad_words_ids = list(
filter(lambda bad_token_seq: all(bad_token_seq != [i] for i in eos_token_id), bad_words_ids)
)
# Forbidding a sequence is equivalent to setting its bias to -inf
sequence_bias = {tuple(sequence): float("-inf") for sequence in bad_words_ids}
super().__init__(sequence_bias=sequence_bias)
def _validate_arguments(self):
bad_words_ids = self.bad_word_ids
if not isinstance(bad_words_ids, list) or len(bad_words_ids) == 0:
raise ValueError(f"`bad_words_ids` has to be a non-empty list, but is {bad_words_ids}.")
if any(not isinstance(bad_word_ids, list) for bad_word_ids in bad_words_ids):
raise ValueError(f"`bad_words_ids` has to be a list of lists, but is {bad_words_ids}.")
if any(
any((not isinstance(token_id, (int, np.integer)) or token_id < 0) for token_id in bad_word_ids)
for bad_word_ids in bad_words_ids
):
raise ValueError(
f"Each list in `bad_words_ids` has to be a list of positive integers, but is {bad_words_ids}."
)
class PrefixConstrainedLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that enforces constrained generation and is useful for prefix-conditioned constrained
generation. See [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904) for more information.
Args:
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`):
This function constraints the beam search to allowed tokens only at each step. This function takes 2
arguments `inputs_ids` and the batch ID `batch_id`. It has to return a list with the allowed tokens for the
next generation step conditioned on the previously generated tokens `inputs_ids` and the batch ID
`batch_id`.
"""
def __init__(self, prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]], num_beams: int):
self._prefix_allowed_tokens_fn = prefix_allowed_tokens_fn
self._num_beams = num_beams
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
mask = torch.full_like(scores, -math.inf)
for batch_id, beam_sent in enumerate(input_ids.view(-1, self._num_beams, input_ids.shape[-1])):
for beam_id, sent in enumerate(beam_sent):
mask[batch_id * self._num_beams + beam_id, self._prefix_allowed_tokens_fn(batch_id, sent)] = 0
return scores + mask
class HammingDiversityLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that enforces diverse beam search.
Note that this logits processor is only effective for [`PreTrainedModel.group_beam_search`]. See [Diverse Beam
Search: Decoding Diverse Solutions from Neural Sequence Models](https://arxiv.org/pdf/1610.02424.pdf) for more
details.
<Tip>
Diverse beam search can be particularly useful in scenarios where a variety of different outputs is desired, rather
than multiple similar sequences. It allows the model to explore different generation paths and provides a broader
coverage of possible outputs.
</Tip>
<Tip warning={true}>
This logits processor can be resource-intensive, especially when using large models or long sequences.
</Tip>
Traditional beam search often generates very similar sequences across different beams.
`HammingDiversityLogitsProcessor` addresses this by penalizing beams that generate tokens already chosen by other
beams in the same time step.
How It Works:
- **Grouping Beams**: Beams are divided into groups. Each group selects tokens independently of the others.
- **Penalizing Repeated Tokens**: If a beam in a group selects a token already chosen by another group in the
same step, a penalty is applied to that token's score.
- **Promoting Diversity**: This penalty discourages beams within a group from selecting the same tokens as
beams in other groups.
Benefits:
- **Diverse Outputs**: Produces a variety of different sequences.
- **Exploration**: Allows the model to explore different paths.
Args:
diversity_penalty (`float`):
This value is subtracted from a beam's score if it generates a token same as any beam from other group at a
particular time. Note that `diversity_penalty` is only effective if group beam search is enabled. The
penalty applied to a beam's score when it generates a token that has already been chosen by another beam
within the same group during the same time step. A higher `diversity_penalty` will enforce greater
diversity among the beams, making it less likely for multiple beams to choose the same token. Conversely, a
lower penalty will allow beams to more freely choose similar tokens. Adjusting this value can help strike a
balance between diversity and natural likelihood.
num_beams (`int`):
Number of beams used for group beam search. Beam search is a method used that maintains beams (or "multiple
hypotheses") at each step, expanding each one and keeping the top-scoring sequences. A higher `num_beams`
will explore more potential sequences. This can increase chances of finding a high-quality output but also
increases computational cost.
num_beam_groups (`int`):
Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams.
Each group of beams will operate independently, selecting tokens without considering the choices of other
groups. This division promotes diversity by ensuring that beams within different groups explore different
paths. For instance, if `num_beams` is 6 and `num_beam_groups` is 2, there will be 2 groups each containing
3 beams. The choice of `num_beam_groups` should be made considering the desired level of output diversity
and the total number of beams. See [this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> import torch
>>> # Initialize the model and tokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
>>> # A long text about the solar system
>>> text = "The Solar System is a gravitationally bound system comprising the Sun and the objects that orbit it, either directly or indirectly. Of the objects that orbit the Sun directly, the largest are the eight planets, with the remainder being smaller objects, such as the five dwarf planets and small Solar System bodies. The Solar System formed 4.6 billion years ago from the gravitational collapse of a giant interstellar molecular cloud."
>>> inputs = tokenizer("summarize: " + text, return_tensors="pt")
>>> # Generate diverse summary
>>> outputs_diverse = model.generate(
... **inputs,
... num_beam_groups=2,
... diversity_penalty=10.0,
... max_length=100,
... num_beams=4,
... num_return_sequences=2,
... )
>>> summaries_diverse = tokenizer.batch_decode(outputs_diverse, skip_special_tokens=True)
>>> # Generate non-diverse summary
>>> outputs_non_diverse = model.generate(
... **inputs,
... max_length=100,
... num_beams=4,
... num_return_sequences=2,
... )
>>> summary_non_diverse = tokenizer.batch_decode(outputs_non_diverse, skip_special_tokens=True)
>>> # With `diversity_penalty`, the resulting beams are much more diverse
>>> print(summary_non_diverse)
['the solar system formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets.',
'the Solar System formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets.']
>>> print(summaries_diverse)
['the solar system formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets.',
'the solar system formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets. the rest of the objects are smaller objects, such as the five dwarf planets and small solar system bodies.']
```
"""
def __init__(self, diversity_penalty: float, num_beams: int, num_beam_groups: int):
if not isinstance(diversity_penalty, float) or (not diversity_penalty > 0.0):
raise ValueError("`diversity_penalty` should be a float strictly larger than 0.")
self._diversity_penalty = diversity_penalty
if not isinstance(num_beams, int) or num_beams < 2:
raise ValueError("`num_beams` should be an integer strictly larger than 1.")
self._num_beams = num_beams
if not isinstance(num_beam_groups, int) or num_beam_groups < 2:
raise ValueError("`num_beam_groups` should be an integer strictly larger than 1.")
if num_beam_groups > num_beams:
raise ValueError("`beam_groups` has to be smaller or equal to `num_beams`.")
self._num_sub_beams = num_beams // num_beam_groups
def __call__(
self,
input_ids: torch.LongTensor,
scores: torch.FloatTensor,
current_tokens: torch.LongTensor,
beam_group_idx: int,
) -> torch.FloatTensor:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
beam search or log softmax for each vocabulary token when using beam search
current_tokens (`torch.LongTensor` of shape `(batch_size)`):
Indices of input sequence tokens in the vocabulary, corresponding to the tokens selected by the other
beam groups in the current generation step.
beam_group_idx (`int`):
The index of the beam group currently being processed.
Return:
`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`:
The processed prediction scores.
"""
# hamming diversity: penalise using same token in current group which was used in previous groups at
# the same time step
batch_size = current_tokens.shape[0] // self._num_beams
group_start_idx = beam_group_idx * self._num_sub_beams
group_end_idx = min(group_start_idx + self._num_sub_beams, self._num_beams)
group_size = group_end_idx - group_start_idx
vocab_size = scores.shape[-1]
if group_start_idx == 0:
return scores
for batch_idx in range(batch_size):
# predicted tokens of last time step of previous groups
previous_group_tokens = current_tokens[
batch_idx * self._num_beams : batch_idx * self._num_beams + group_start_idx
]
token_frequency = torch.bincount(previous_group_tokens, minlength=vocab_size).to(scores.device)
scores[batch_idx * group_size : (batch_idx + 1) * group_size] -= self._diversity_penalty * token_frequency
return scores
class ForcedBOSTokenLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that enforces the specified token as the first generated token.
Args:
bos_token_id (`int`):
The id of the token to force as the first generated token.
"""
def __init__(self, bos_token_id: int):
self.bos_token_id = bos_token_id
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
cur_len = input_ids.shape[-1]
if cur_len == 1:
num_tokens = scores.shape[1]
scores[:, [i for i in range(num_tokens) if i != self.bos_token_id]] = -float("inf")
scores[:, self.bos_token_id] = 0
return scores
class ForcedEOSTokenLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that enforces the specified token as the last generated token when `max_length` is reached.
Args:
max_length (`int`):
The maximum length of the sequence to be generated.
eos_token_id (`Union[int, List[int]]`):
The id of the token to force as the last generated token when `max_length` is reached. Optionally, use a
list to set multiple *end-of-sequence* tokens.
"""
def __init__(self, max_length: int, eos_token_id: Union[int, List[int]]):
self.max_length = max_length
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
self.eos_token_id = eos_token_id
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
cur_len = input_ids.shape[-1]
if cur_len == self.max_length - 1:
num_tokens = scores.shape[1]
scores[:, [i for i in range(num_tokens) if i not in self.eos_token_id]] = -float("inf")
for i in self.eos_token_id:
scores[:, i] = 0
return scores
class InfNanRemoveLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that removes all `nan` and `inf` values to avoid the generation method to fail. Note that using
the logits processor should only be used if necessary since it can slow down the generation method.
"""
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# set all nan values to 0.0
scores[scores != scores] = 0.0
# set all inf values to max possible value
scores[scores == float("inf")] = torch.finfo(scores.dtype).max
return scores
class ExponentialDecayLengthPenalty(LogitsProcessor):
r"""
[`LogitsProcessor`] that exponentially increases the score of the `eos_token_id` after `start_index` has been
reached. This allows generating shorter sequences without having a hard cutoff, allowing the `eos_token` to be
predicted in a meaningful position.
Args:
exponential_decay_length_penalty (`tuple(int, float)`):
This tuple shall consist of: `(start_index, decay_factor)` where `start_index` indicates where penalty
starts and `decay_factor` represents the factor of exponential decay
eos_token_id (`Union[int, List[int]]`):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
input_ids_seq_length (`int`):
The length of the input sequence.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> set_seed(1)
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> text = "Just wanted to let you know, I"
>>> inputs = tokenizer(text, return_tensors="pt")
>>> # Generate sequences without exponential penalty. We want short sentences, so we limit max_length=30
>>> # see that the answer tends to end abruptly
>>> outputs = model.generate(**inputs, do_sample=True, temperature=0.9, max_length=30, pad_token_id=50256)
>>> print(tokenizer.batch_decode(outputs)[0])
Just wanted to let you know, I'm not even a lawyer. I'm a man. I have no real knowledge of politics. I'm a
>>> # Generate sequences with exponential penalty, we add the exponential_decay_length_penalty=(start_index, decay_factor)
>>> # We see that instead of cutting at max_tokens, the output comes to an end before (at 25 tokens) and with more meaning
>>> # What happens is that starting from `start_index` the EOS token score will be increased by decay_factor exponentially
>>> outputs = model.generate(
... **inputs,
... do_sample=True,
... temperature=0.9,
... max_length=30,
... pad_token_id=50256,
... exponential_decay_length_penalty=(15, 1.6),
... )
>>> print(tokenizer.batch_decode(outputs)[0])
Just wanted to let you know, I've got a very cool t-shirt educating people on how to use the Internet<|endoftext|>
>>> # Generate sequences with smaller decay_factor, still improving the hard cutoff mid-sentence
>>> outputs = model.generate(
... **inputs,
... do_sample=True,
... temperature=0.9,
... max_length=30,
... pad_token_id=50256,
... exponential_decay_length_penalty=(15, 1.05),
... )
>>> print(tokenizer.batch_decode(outputs)[0])
Just wanted to let you know, I've been working on it for about 6 months and now it's in Alpha.<|endoftext|>
```
"""
def __init__(
self,
exponential_decay_length_penalty: Tuple[int, float],
eos_token_id: Union[int, List[int]],
input_ids_seq_length: int,
):
self.regulation_start = exponential_decay_length_penalty[0] + input_ids_seq_length
self.regulation_factor = exponential_decay_length_penalty[1]
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
self.eos_token_id = eos_token_id
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
cur_len = input_ids.shape[-1]
if cur_len > self.regulation_start:
for i in self.eos_token_id:
penalty_idx = cur_len - self.regulation_start
# To support negative logits we compute the penalty of the absolute value and add to the original logit
scores[:, i] = scores[:, i] + torch.abs(scores[:, i]) * (pow(self.regulation_factor, penalty_idx) - 1)
return scores
class LogitNormalization(LogitsProcessor, LogitsWarper):
r"""
[`LogitsWarper`] and [`LogitsProcessor`] for normalizing the scores using log-softmax. It's important to normalize
the scores during beam search, after applying the logits processors or warpers, since the search algorithm used in
this library doesn't do it (it only does it before, but they may need re-normalization) but it still supposes that
the scores are normalized when comparing the hypotheses.
"""
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
scores = scores.log_softmax(dim=-1)
return scores
class SuppressTokensAtBeginLogitsProcessor(LogitsProcessor):
r"""
[`SuppressTokensAtBeginLogitsProcessor`] supresses a list of tokens as soon as the `generate` function starts
generating using `begin_index` tokens. This should ensure that the tokens defined by `begin_suppress_tokens` at not
sampled at the begining of the generation.
"""
def __init__(self, begin_suppress_tokens, begin_index):
self.begin_suppress_tokens = list(begin_suppress_tokens)
self.begin_index = begin_index
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
if input_ids.shape[1] == self.begin_index:
scores[:, self.begin_suppress_tokens] = -float("inf")
return scores
class SuppressTokensLogitsProcessor(LogitsProcessor):
r"""This processor can be used to suppress a list of tokens. The processor will set their log probs to `-inf` so that they
are not sampled."""
def __init__(self, suppress_tokens):
self.suppress_tokens = list(suppress_tokens)
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
scores[:, self.suppress_tokens] = -float("inf")
return scores
class ForceTokensLogitsProcessor(LogitsProcessor):
r"""This processor takes a list of pairs of integers which indicates a mapping from generation indices to token
indices that will be forced before sampling. The processor will set their log probs to `inf` so that they are
sampled at their corresponding index."""
def __init__(self, force_token_map: List[List[int]]):
self.force_token_map = dict(force_token_map)
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
generation_idx = input_ids.shape[-1]
current_token = self.force_token_map.get(generation_idx, None)
if current_token is not None:
scores[:, :] = -float("inf")
scores[:, current_token] = 0
return scores
class WhisperTimeStampLogitsProcessor(LogitsProcessor):
r"""
Whisper specific Processor. This processor can be used to force a list of tokens. The processor will set their log
probs to `inf` so that they are sampled at their corresponding index.
See [the paper](https://arxiv.org/abs/2212.04356) for more information.
Args:
generate_config (`GenerateConfig`):
The generate config used to generate the output. The following parameters are required:
eos_token_id (`int`, *optional*, defaults to 50257):
The id of the *end-of-sequence* token.
no_timestamps_token_id (`int`, *optional*, defaults to 50363):
The id of the `"<|notimestamps|>"` token.
max_initial_timestamp_index (`int`, *optional*, defaults to 1):
Used to set the maximum value of the initial timestamp. This is used to prevent the model from
predicting timestamps that are too far in the future.
"""
def __init__(self, generate_config): # support for the kwargs
self.eos_token_id = generate_config.eos_token_id
self.no_timestamps_token_id = generate_config.no_timestamps_token_id
self.timestamp_begin = generate_config.no_timestamps_token_id + 1
self.begin_index = len(generate_config.forced_decoder_ids) + 2
if generate_config.forced_decoder_ids[-1][1] == self.no_timestamps_token_id:
self.begin_index -= 1
self.max_initial_timestamp_index = generate_config.max_initial_timestamp_index
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# suppress <|notimestamps|> which is handled by without_timestamps
scores[:, self.no_timestamps_token_id] = -float("inf")
if input_ids.shape[1] == self.begin_index - 1:
scores[:, :] = -float("inf")
scores[:, self.timestamp_begin] = 0
return scores
# timestamps have to appear in pairs, except directly before eos_token; mask logits accordingly
for k in range(input_ids.shape[0]):
seq = list(input_ids[k, self.begin_index :].tolist())
last_was_timestamp = len(seq) >= 1 and seq[-1] >= self.timestamp_begin
penultimate_was_timestamp = len(seq) < 2 or seq[-2] >= self.timestamp_begin
if last_was_timestamp:
if penultimate_was_timestamp: # has to be non-timestamp
scores[k, self.timestamp_begin :] = -float("inf")
else: # cannot be normal text tokens
scores[k, : self.eos_token_id] = -float("inf")
# apply the `max_initial_timestamp` option
if input_ids.shape[1] == self.begin_index and self.max_initial_timestamp_index is not None:
last_allowed = self.timestamp_begin + self.max_initial_timestamp_index
scores[:, last_allowed + 1 :] = -float("inf")
# if sum of probability over timestamps is above any other token, sample timestamp
logprobs = torch.nn.functional.log_softmax(scores.float(), dim=-1)
for k in range(input_ids.shape[0]):
timestamp_logprob = logprobs[k, self.timestamp_begin :].logsumexp(dim=-1)
max_text_token_logprob = logprobs[k, : self.timestamp_begin].max()
if timestamp_logprob > max_text_token_logprob:
scores[k, : self.timestamp_begin] = -float("inf")
return scores
class ClassifierFreeGuidanceLogitsProcessor(LogitsProcessor):
r"""Logits processor for classifier free guidance (CFG). The scores are split over the batch dimension,
where the first half correspond to the conditional logits (predicted from the input prompt) and the second half
correspond to the unconditional logits (predicted from an empty or 'null' prompt). The processor computes a
weighted average across the conditional and unconditional logits, parameterised by the `guidance_scale`.
See [the paper](https://arxiv.org/abs/2306.05284) for more information.
Args:
guidance_scale (float):
The guidance scale for classifier free guidance (CFG). CFG is enabled by setting `guidance_scale > 1`.
Higher guidance scale encourages the model to generate samples that are more closely linked to the input
prompt, usually at the expense of poorer quality.
"""
def __init__(self, guidance_scale):
if guidance_scale > 1:
self.guidance_scale = guidance_scale
else:
raise ValueError(
"Require guidance scale >1 to use the classifier free guidance processor, got guidance scale "
f"{guidance_scale}."
)
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# simple check to make sure we have compatible batch sizes between our
# logits scores (cond + uncond) and input ids (cond only)
if scores.shape[0] != 2 * input_ids.shape[0]:
raise ValueError(
f"Logits should have twice the batch size of the input ids, the first half of batches corresponding to "
f"the conditional inputs, and the second half of batches corresponding to the unconditional inputs. Got "
f"batch size {scores.shape[0]} for the logits and {input_ids.shape[0]} for the input ids."
)
unguided_bsz = scores.shape[0] // 2
cond_logits, uncond_logits = scores.split(unguided_bsz, dim=0)
scores = uncond_logits + (cond_logits - uncond_logits) * self.guidance_scale
return scores
class AlternatingCodebooksLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] enforcing alternated generation between the two codebooks of [`Bark`]'s fine submodel.
Args:
input_start_len (`int`):
The length of the initial input sequence.
semantic_vocab_size (`int`):
Vocabulary size of the semantic part, i.e number of tokens associated to the semantic vocabulary.
codebook_size (`int`):
Number of tokens associated to the codebook.
"""
def __init__(self, input_start_len: int, semantic_vocab_size: int, codebook_size: int):
if not isinstance(input_start_len, int) or input_start_len < 0:
raise ValueError(f"`input_starting_length` has to be a non-negative integer, but is {input_start_len}")
self.input_start_len = input_start_len
self.semantic_vocab_size = semantic_vocab_size
self.codebook_size = codebook_size
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
curr_len = input_ids.shape[-1]
# even -> first codebook, odd -> second codebook
is_first_codebook = ((curr_len - self.input_start_len) % 2) == 0
if is_first_codebook:
scores[:, : self.semantic_vocab_size] = -float("inf")
scores[:, self.semantic_vocab_size + self.codebook_size :] = -float("inf")
else:
scores[:, : self.semantic_vocab_size + self.codebook_size] = -float("inf")
return scores
class UnbatchedClassifierFreeGuidanceLogitsProcessor(LogitsProcessor):
r"""Logits processor for Classifier-Free Guidance (CFG). The processors
computes a weighted average across scores from prompt conditional and prompt unconditional (or negative) logits,
parameterized by the `guidance_scale`. The unconditional scores are computed internally by prompting `model` with
the `unconditional_ids` branch.
See [the paper](https://arxiv.org/abs/2306.17806) for more information.
Args:
guidance_scale (`float`):
The guidance scale for classifier free guidance (CFG). CFG is enabled by setting `guidance_scale != 1`.
Higher guidance scale encourages the model to generate samples that are more closely linked to the input
prompt, usually at the expense of poorer quality. A value smaller than 1 has the opposite effect, while
making the negative prompt provided with negative_prompt_ids (if any) act as a positive prompt.
model (`PreTrainedModel`):
The model computing the unconditional scores. Supposedly the same as the one computing the conditional
scores. Both models must use the same tokenizer.
unconditional_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of input sequence tokens in the vocabulary for the unconditional branch. If unset, will default to
the last token of the prompt.
unconditional_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Attention mask for unconditional_ids.
use_cache (`bool`, *optional*, defaults to `True`):
Whether to cache key/values during the negative prompt forward pass.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> inputs = tokenizer(["Today, a dragon flew over Paris, France,"], return_tensors="pt")
>>> out = model.generate(inputs["input_ids"], guidance_scale=1.5)
>>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
'Today, a dragon flew over Paris, France, killing at least 50 people and injuring more than 100'
>>> # with a negative prompt
>>> neg_inputs = tokenizer(["A very happy event happened,"], return_tensors="pt")
>>> out = model.generate(inputs["input_ids"], guidance_scale=2, negative_prompt_ids=neg_inputs["input_ids"])
>>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
'Today, a dragon flew over Paris, France, killing at least 130 people. French media reported that'
>>> # with a positive prompt
>>> neg_inputs = tokenizer(["A very happy event happened,"], return_tensors="pt")
>>> out = model.generate(inputs["input_ids"], guidance_scale=0, negative_prompt_ids=neg_inputs["input_ids"])
>>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
"Today, a dragon flew over Paris, France, and I'm very happy to be here. I"
```
"""
def __init__(
self,
guidance_scale: float,
model,
unconditional_ids: Optional[torch.LongTensor] = None,
unconditional_attention_mask: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = True,
):
self.guidance_scale = guidance_scale
self.model = model
self.unconditional_context = {
"input_ids": unconditional_ids,
"attention_mask": unconditional_attention_mask,
"use_cache": use_cache,
"past_key_values": None,
"first_pass": True,
}
def get_unconditional_logits(self, input_ids):
if self.unconditional_context["first_pass"]:
if self.unconditional_context["input_ids"] is None:
self.unconditional_context["input_ids"] = input_ids[:, -1:]
if self.unconditional_context["attention_mask"] is None:
self.unconditional_context["attention_mask"] = torch.ones_like(
self.unconditional_context["input_ids"], dtype=torch.long
)
input_ids = self.unconditional_context["input_ids"]
attention_mask = self.unconditional_context["attention_mask"]
self.unconditional_context["first_pass"] = False
else:
attention_mask = torch.cat(
[
self.unconditional_context["attention_mask"],
torch.ones_like(input_ids[:, -1:], dtype=torch.long),
],
dim=1,
)
if not self.unconditional_context["use_cache"]:
input_ids = torch.cat([self.unconditional_context["input_ids"], input_ids[:, -1:]], dim=1)
else:
input_ids = input_ids[:, -1:]
self.unconditional_context["input_ids"] = input_ids
self.unconditional_context["attention_mask"] = attention_mask
out = self.model(
input_ids,
attention_mask=attention_mask,
use_cache=self.unconditional_context["use_cache"],
past_key_values=self.unconditional_context["past_key_values"],
)
self.unconditional_context["past_key_values"] = out.get("past_key_values", None)
return out.logits
def __call__(self, input_ids, scores):
scores = torch.nn.functional.log_softmax(scores, dim=-1)
if self.guidance_scale == 1:
return scores
logits = self.get_unconditional_logits(input_ids)
unconditional_logits = torch.nn.functional.log_softmax(logits[:, -1], dim=-1)
out = self.guidance_scale * (scores - unconditional_logits) + unconditional_logits
return out
|