File size: 49,500 Bytes
f8f5cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
# coding=utf-8
# Copyright 2021 The Google AI Flax Team Authors, and The HuggingFace Inc. team.
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import copy
import inspect
import warnings
from functools import partial
from typing import Any, Dict, Optional, Union

import flax
import jax
import jax.numpy as jnp
import numpy as np
from jax import lax

from ..models.auto import (
    FLAX_MODEL_FOR_CAUSAL_LM_MAPPING,
    FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
    FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING,
)
from ..utils import ModelOutput, logging
from .configuration_utils import GenerationConfig
from .flax_logits_process import (
    FlaxForcedBOSTokenLogitsProcessor,
    FlaxForcedEOSTokenLogitsProcessor,
    FlaxForceTokensLogitsProcessor,
    FlaxLogitsProcessorList,
    FlaxMinLengthLogitsProcessor,
    FlaxSuppressTokensAtBeginLogitsProcessor,
    FlaxSuppressTokensLogitsProcessor,
    FlaxTemperatureLogitsWarper,
    FlaxTopKLogitsWarper,
    FlaxTopPLogitsWarper,
)


logger = logging.get_logger(__name__)


@flax.struct.dataclass
class FlaxGreedySearchOutput(ModelOutput):
    """
    Flax Base class for outputs of decoder-only generation models using greedy search.


    Args:
        sequences (`jnp.ndarray` of shape `(batch_size, max_length)`):
            The generated sequences.
    """

    sequences: jnp.ndarray = None


@flax.struct.dataclass
class FlaxSampleOutput(ModelOutput):
    """
    Flax Base class for outputs of decoder-only generation models using sampling.


    Args:
        sequences (`jnp.ndarray` of shape `(batch_size, max_length)`):
            The generated sequences.
    """

    sequences: jnp.ndarray = None


@flax.struct.dataclass
class FlaxBeamSearchOutput(ModelOutput):
    """
    Flax Base class for outputs of decoder-only generation models using greedy search.


    Args:
        sequences (`jnp.ndarray` of shape `(batch_size, max_length)`):
            The generated sequences.
        scores (`jnp.ndarray` of shape `(batch_size,)`):
            The scores (log probabilities) of the generated sequences.
    """

    sequences: jnp.ndarray = None
    scores: jnp.ndarray = None


@flax.struct.dataclass
class GreedyState:
    cur_len: jnp.ndarray
    sequences: jnp.ndarray
    running_token: jnp.ndarray
    is_sent_finished: jnp.ndarray
    model_kwargs: Dict[str, jnp.ndarray]


@flax.struct.dataclass
class SampleState:
    cur_len: jnp.ndarray
    sequences: jnp.ndarray
    running_token: jnp.ndarray
    is_sent_finished: jnp.ndarray
    prng_key: jnp.ndarray
    model_kwargs: Dict[str, jnp.ndarray]


@flax.struct.dataclass
class BeamSearchState:
    cur_len: jnp.ndarray
    running_sequences: jnp.ndarray
    running_scores: jnp.ndarray
    sequences: jnp.ndarray
    scores: jnp.ndarray
    is_sent_finished: jnp.ndarray
    model_kwargs: Dict[str, jnp.ndarray]


class FlaxGenerationMixin:
    """
    A class containing all functions for auto-regressive text generation, to be used as a mixin in
    [`FlaxPreTrainedModel`].

    The class exposes [`~generation.FlaxGenerationMixin.generate`], which can be used for:
            - *greedy decoding* by calling [`~generation.FlaxGenerationMixin._greedy_search`] if `num_beams=1` and
              `do_sample=False`
            - *multinomial sampling* by calling [`~generation.FlaxGenerationMixin._sample`] if `num_beams=1` and
              `do_sample=True`
            - *beam-search decoding* by calling [`~generation.FlaxGenerationMixin._beam_search`] if `num_beams>1` and
              `do_sample=False`

    You do not need to call any of the above methods directly. Pass custom parameter values to 'generate' instead. To
    learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies).
    """

    def prepare_inputs_for_generation(self, *args, **kwargs):
        raise NotImplementedError(
            "A model class needs to define a `prepare_inputs_for_generation` method in order to use `generate`."
        )

    @staticmethod
    def _run_loop_in_debug(cond_fn, body_fn, init_state):
        """
        Run generation in untraced mode. This should only be used for debugging purposes.
        """
        state = init_state
        while cond_fn(state):
            state = body_fn(state)
        return state

    def _prepare_encoder_decoder_kwargs_for_generation(self, input_ids, params, model_kwargs):
        encoder_kwargs = {
            argument: value
            for argument, value in model_kwargs.items()
            if not (argument.startswith("decoder_") or argument.startswith("cross_attn"))
        }
        model_kwargs["encoder_outputs"] = self.encode(input_ids, params=params, return_dict=True, **encoder_kwargs)
        return model_kwargs

    def _prepare_decoder_input_ids_for_generation(
        self,
        batch_size: int,
        decoder_start_token_id: int = None,
        bos_token_id: int = None,
        model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
    ) -> jnp.ndarray:
        if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
            # Only use this arg if not None, otherwise just remove from model_kwargs
            decoder_input_ids = model_kwargs.pop("decoder_input_ids")
            if decoder_input_ids is not None:
                return decoder_input_ids
        decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id)
        return jnp.array(decoder_start_token_id, dtype="i4").reshape(1, -1).repeat(batch_size, axis=0)

    def _get_decoder_start_token_id(self, decoder_start_token_id: int = None, bos_token_id: int = None) -> int:
        # retrieve decoder_start_token_id for encoder-decoder models
        # fall back to bos_token_id if necessary
        decoder_start_token_id = (
            decoder_start_token_id
            if decoder_start_token_id is not None
            else self.generation_config.decoder_start_token_id
        )
        bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id
        if decoder_start_token_id is not None:
            return decoder_start_token_id
        elif (
            hasattr(self.config, "decoder")
            and hasattr(self.config.decoder, "decoder_start_token_id")
            and self.config.decoder.decoder_start_token_id is not None
        ):
            return self.config.decoder.decoder_start_token_id
        elif bos_token_id is not None:
            return bos_token_id
        elif (
            hasattr(self.config, "decoder")
            and hasattr(self.config.decoder, "bos_token_id")
            and self.config.decoder.bos_token_id is not None
        ):
            return self.config.decoder.bos_token_id
        raise ValueError(
            "`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
        )

    @staticmethod
    def _expand_to_num_beams(tensor, num_beams):
        return jnp.broadcast_to(tensor[:, None], (tensor.shape[0], num_beams) + tensor.shape[1:])

    def _adapt_logits_for_beam_search(self, logits):
        """
        This function can be overwritten in the specific modeling_flax_<model-name>.py classes to allow for custom beam
        search behavior. Note that the only model that overwrites this method is [`~transformes.FlaxMarianMTModel`].
        """
        return logits

    def _validate_model_class(self):
        """
        Confirms that the model class is compatible with generation. If not, raises an exception that points to the
        right class to use.
        """
        if not self.can_generate():
            generate_compatible_mappings = [
                FLAX_MODEL_FOR_CAUSAL_LM_MAPPING,
                FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING,
                FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
            ]
            generate_compatible_classes = set()
            for model_mapping in generate_compatible_mappings:
                supported_models = model_mapping.get(type(self.config), default=None)
                if supported_models is not None:
                    generate_compatible_classes.add(supported_models.__name__)
            exception_message = (
                f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as "
                "it doesn't have a language model head."
            )
            if generate_compatible_classes:
                exception_message += f" Please use one of the following classes instead: {generate_compatible_classes}"
            raise TypeError(exception_message)

    def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
        """Validates model kwargs for generation. Generate argument typos will also be caught here."""
        unused_model_args = []
        model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters)
        # `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If
        # `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;)
        if "kwargs" in model_args or "model_kwargs" in model_args:
            model_args |= set(inspect.signature(self.__call__).parameters)
        for key, value in model_kwargs.items():
            if value is not None and key not in model_args:
                unused_model_args.append(key)

        if unused_model_args:
            raise ValueError(
                f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the"
                " generate arguments will also show up in this list)"
            )

    def generate(
        self,
        input_ids: jnp.ndarray,
        generation_config: Optional[GenerationConfig] = None,
        prng_key: Optional[jnp.ndarray] = None,
        trace: bool = True,
        params: Optional[Dict[str, jnp.ndarray]] = None,
        logits_processor: Optional[FlaxLogitsProcessorList] = None,
        **kwargs,
    ):
        r"""
        Generates sequences of token ids for models with a language modeling head.

        Parameters:
            input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            generation_config (`~generation.GenerationConfig`, *optional*):
                The generation configuration to be used as base parametrization for the generation call. `**kwargs`
                passed to generate matching the attributes of `generation_config` will override them. If
                `generation_config` is not provided, the default will be used, which had the following loading
                priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
                configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
                default values, whose documentation should be checked to parameterize generation.
            trace (`bool`, *optional*, defaults to `True`):
                Whether to trace generation. Setting `trace=False` should only be used for debugging and will lead to a
                considerably slower runtime.
            params (`Dict[str, jnp.ndarray]`, *optional*):
                Optionally the model parameters can be passed. Can be useful for parallelized generation.
            logits_processor (`FlaxLogitsProcessorList `, *optional*):
                Custom logits processors that complement the default logits processors built from arguments and
                generation config. If a logit processor is passed that is already created with the arguments or a
                generation config an error is thrown. This feature is intended for advanced users.
            kwargs (`Dict[str, Any]`, *optional*):
                Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
                forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
                specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.

        Return:
            [`~utils.ModelOutput`].

        """
        # Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
        self._validate_model_class()

        # priority: `generation_config` argument > `model.generation_config` (the default generation config)
        if generation_config is None:
            # legacy: users may modify the model configuration to control generation. To trigger this legacy behavior,
            # two conditions must be met
            # 1) the generation config must have been created from the model config (`_from_model_config` field);
            # 2) the generation config must have seen no modification since its creation (the hash is the same).
            if self.generation_config._from_model_config and self.generation_config._original_object_hash == hash(
                self.generation_config
            ):
                new_generation_config = GenerationConfig.from_model_config(self.config)
                if new_generation_config != self.generation_config:
                    warnings.warn(
                        "You have modified the pretrained model configuration to control generation. This is a"
                        " deprecated strategy to control generation and will be removed soon, in a future version."
                        " Please use and modify the model generation configuration (see"
                        " https://huggingface.co./docs/transformers/generation_strategies#default-text-generation-configuration )"
                    )
                    self.generation_config = new_generation_config
            generation_config = self.generation_config

        generation_config = copy.deepcopy(generation_config)
        model_kwargs = generation_config.update(**kwargs)  # All unused kwargs must be model kwargs
        generation_config.validate()
        self._validate_model_kwargs(model_kwargs.copy())

        logits_processor = logits_processor if logits_processor is not None else FlaxLogitsProcessorList()

        # set init values
        prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0)

        if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
            if model_kwargs.get("attention_mask") is None:
                logger.warning(
                    "The attention mask and the pad token id were not set. As a consequence, you may observe "
                    "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
                )
            eos_token_id = generation_config.eos_token_id
            if isinstance(eos_token_id, list):
                eos_token_id = eos_token_id[0]
            logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
            generation_config.pad_token_id = eos_token_id

        if generation_config.decoder_start_token_id is None and self.config.is_encoder_decoder:
            raise ValueError("`decoder_start_token_id` has to be defined for encoder-decoder generation.")

        # decoder-only models should use left-padding for generation (can't be checked with `trace=True`)
        if not self.config.is_encoder_decoder and not trace:
            if (
                generation_config.pad_token_id is not None
                and jnp.sum(input_ids[:, -1] == generation_config.pad_token_id) > 0
            ):
                logger.warning(
                    "A decoder-only architecture is being used, but right-padding was detected! For correct "
                    "generation results, please set `padding_side='left'` when initializing the tokenizer."
                )

        batch_size = input_ids.shape[0]

        if self.config.is_encoder_decoder:
            # add encoder_outputs to model_kwargs
            if model_kwargs.get("encoder_outputs") is None:
                model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(input_ids, params, model_kwargs)
            # prepare decoder_input_ids for generation
            input_ids = self._prepare_decoder_input_ids_for_generation(
                batch_size,
                decoder_start_token_id=generation_config.decoder_start_token_id,
                bos_token_id=generation_config.bos_token_id,
                model_kwargs=model_kwargs,
            )

        # Prepare `max_length` depending on other stopping criteria.
        input_ids_seq_length = input_ids.shape[-1]
        has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
        if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20:
            # 20 is the default max_length of the generation config
            warnings.warn(
                f"Using the model-agnostic default `max_length` (={generation_config.max_length}) "
                "to control the generation length.  recommend setting `max_new_tokens` to control the maximum length of the generation.",
                UserWarning,
            )
        elif generation_config.max_new_tokens is not None:
            if not has_default_max_length and generation_config.max_length is not None:
                logger.warning(
                    f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
                    f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
                    "Please refer to the documentation for more information. "
                    "(https://huggingface.co./docs/transformers/main/en/main_classes/text_generation)"
                )
            generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length

        if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length:
            raise ValueError(
                f"Unfeasable length constraints: the minimum length ({generation_config.min_length}) is larger than"
                f" the maximum length ({generation_config.max_length})"
            )
        if input_ids_seq_length >= generation_config.max_length:
            input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
            logger.warning(
                f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
                f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
                " increasing`max_new_tokens`."
            )

        logits_processor = self._get_logits_processor(
            generation_config=generation_config,
            input_ids_seq_length=input_ids_seq_length,
            logits_processor=logits_processor,
        )

        if not generation_config.do_sample and generation_config.num_beams == 1:
            return self._greedy_search(
                input_ids,
                generation_config.max_length,
                generation_config.pad_token_id,
                generation_config.eos_token_id,
                logits_processor=logits_processor,
                trace=trace,
                params=params,
                model_kwargs=model_kwargs,
            )
        elif generation_config.do_sample and generation_config.num_beams == 1:
            logits_warper = self._get_logits_warper(generation_config=generation_config)
            return self._sample(
                input_ids,
                generation_config.max_length,
                generation_config.pad_token_id,
                generation_config.eos_token_id,
                prng_key,
                logits_warper=logits_warper,
                logits_processor=logits_processor,
                trace=trace,
                params=params,
                model_kwargs=model_kwargs,
            )
        elif not generation_config.do_sample and generation_config.num_beams > 1:
            # broadcast input_ids & encoder_outputs
            input_ids = self._expand_to_num_beams(input_ids, num_beams=generation_config.num_beams)

            if "encoder_outputs" in model_kwargs:
                model_kwargs["encoder_outputs"]["last_hidden_state"] = self._expand_to_num_beams(
                    model_kwargs["encoder_outputs"]["last_hidden_state"], num_beams=generation_config.num_beams
                )

            for kwarg in ["attention_mask", "decoder_attention_mask"]:
                if kwarg in model_kwargs:
                    model_kwargs[kwarg] = self._expand_to_num_beams(
                        model_kwargs[kwarg], num_beams=generation_config.num_beams
                    )

            return self._beam_search(
                input_ids,
                generation_config.max_length,
                generation_config.pad_token_id,
                generation_config.eos_token_id,
                length_penalty=generation_config.length_penalty,
                early_stopping=generation_config.early_stopping,
                logits_processor=logits_processor,
                trace=trace,
                params=params,
                num_return_sequences=generation_config.num_return_sequences,
                model_kwargs=model_kwargs,
            )
        else:
            raise NotImplementedError("`Beam sampling is currently not implemented.")

    def _get_logits_warper(self, generation_config: GenerationConfig) -> FlaxLogitsProcessorList:
        """
        This class returns a [`FlaxLogitsProcessorList`] list object that contains all relevant [`FlaxLogitsWarper`]
        instances used for multinomial sampling.
        """
        warpers = FlaxLogitsProcessorList()

        if generation_config.temperature is not None and generation_config.temperature != 1.0:
            warpers.append(FlaxTemperatureLogitsWarper(generation_config.temperature))
        if generation_config.top_k is not None and generation_config.top_k != 0:
            warpers.append(FlaxTopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=1))
        if generation_config.top_p is not None and generation_config.top_p < 1.0:
            warpers.append(FlaxTopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=1))

        return warpers

    def _get_logits_processor(
        self,
        generation_config: GenerationConfig,
        input_ids_seq_length: int,
        logits_processor: Optional[FlaxLogitsProcessorList],
    ) -> FlaxLogitsProcessorList:
        """
        This class returns a [`FlaxLogitsProcessorList`] list object that contains all relevant [`FlaxLogitsProcessor`]
        instances used to modify the scores of the language model head.
        """
        processors = FlaxLogitsProcessorList()

        if (
            generation_config.min_length is not None
            and generation_config.eos_token_id is not None
            and generation_config.min_length > -1
        ):
            processors.append(
                FlaxMinLengthLogitsProcessor(generation_config.min_length, generation_config.eos_token_id)
            )
        if generation_config.forced_bos_token_id is not None:
            processors.append(FlaxForcedBOSTokenLogitsProcessor(generation_config.forced_bos_token_id))
        if generation_config.forced_eos_token_id is not None:
            processors.append(
                FlaxForcedEOSTokenLogitsProcessor(generation_config.max_length, generation_config.forced_eos_token_id)
            )
        if generation_config.suppress_tokens is not None:
            processors.append(FlaxSuppressTokensLogitsProcessor(generation_config.suppress_tokens))
        if generation_config.begin_suppress_tokens is not None:
            begin_index = input_ids_seq_length
            begin_index = (
                begin_index
                if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None)
                else begin_index + 1
            )
            if generation_config.forced_decoder_ids is not None and len(generation_config.forced_decoder_ids) > 0:
                # generation starts after the last token that is forced
                begin_index += generation_config.forced_decoder_ids[-1][0]
            processors.append(
                FlaxSuppressTokensAtBeginLogitsProcessor(generation_config.begin_suppress_tokens, begin_index)
            )
        if generation_config.forced_decoder_ids is not None:
            forced_decoder_ids = [
                [input_ids_seq_length + i[0] - 1, i[1]] for i in generation_config.forced_decoder_ids
            ]
            processors.append(FlaxForceTokensLogitsProcessor(forced_decoder_ids))
        processors = self._merge_criteria_processor_list(processors, logits_processor)

        return processors

    def _merge_criteria_processor_list(
        self,
        default_list: FlaxLogitsProcessorList,
        custom_list: FlaxLogitsProcessorList,
    ) -> FlaxLogitsProcessorList:
        if len(custom_list) == 0:
            return default_list
        for default in default_list:
            for custom in custom_list:
                if type(custom) is type(default):
                    object_type = "logits processor"
                    raise ValueError(
                        f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to"
                        f" `generate`, but it has already been created with the values {default}. {default} has been"
                        " created by passing the corresponding arguments to generate or by the model's config default"
                        f" values. If you just want to change the default values of {object_type} consider passing"
                        f" them as arguments to `generate` instead of using a custom {object_type}."
                    )
        default_list.extend(custom_list)
        return default_list

    def _greedy_search(
        self,
        input_ids: None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[int] = None,
        logits_processor: Optional[FlaxLogitsProcessorList] = None,
        trace: bool = True,
        params: Optional[Dict[str, jnp.ndarray]] = None,
        model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
    ):
        # init values
        max_length = max_length if max_length is not None else self.generation_config.max_length
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id

        batch_size, cur_len = input_ids.shape

        eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None)
        pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32)
        cur_len = jnp.array(cur_len)

        # per batch-item holding current token in loop.
        sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32)
        sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0))

        # per batch-item state bit indicating if sentence has finished.
        is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_)

        # For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
        # and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
        model = self.decode if self.config.is_encoder_decoder else self
        # initialize model specific kwargs
        model_kwargs = self.prepare_inputs_for_generation(input_ids, max_length, **model_kwargs)

        # initialize state
        state = GreedyState(
            cur_len=cur_len,
            sequences=sequences,
            running_token=input_ids,
            is_sent_finished=is_sent_finished,
            model_kwargs=model_kwargs,
        )

        def greedy_search_cond_fn(state):
            """state termination condition fn."""
            has_reached_max_length = state.cur_len == max_length
            all_sequence_finished = jnp.all(state.is_sent_finished)
            finish_generation = jnp.logical_or(has_reached_max_length, all_sequence_finished)
            return ~finish_generation

        def greedy_search_body_fn(state):
            """state update fn."""
            model_outputs = model(state.running_token, params=params, **state.model_kwargs)
            logits = model_outputs.logits[:, -1]

            # apply min_length, ...
            logits = logits_processor(state.sequences, logits, state.cur_len)

            next_token = jnp.argmax(logits, axis=-1)

            next_token = next_token * ~state.is_sent_finished + pad_token_id * state.is_sent_finished
            next_is_sent_finished = state.is_sent_finished | (next_token == eos_token_id)
            next_token = next_token[:, None]

            next_sequences = lax.dynamic_update_slice(state.sequences, next_token, (0, state.cur_len))
            next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs)
            return GreedyState(
                cur_len=state.cur_len + 1,
                sequences=next_sequences,
                running_token=next_token,
                is_sent_finished=next_is_sent_finished,
                model_kwargs=next_model_kwargs,
            )

        # The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
        if input_ids.shape[1] > 1:
            state = greedy_search_body_fn(state)

        if not trace:
            state = self._run_loop_in_debug(greedy_search_cond_fn, greedy_search_body_fn, state)
        else:
            state = lax.while_loop(greedy_search_cond_fn, greedy_search_body_fn, state)

        return FlaxGreedySearchOutput(sequences=state.sequences)

    def _sample(
        self,
        input_ids: None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[int] = None,
        prng_key: Optional[jnp.ndarray] = None,
        logits_processor: Optional[FlaxLogitsProcessorList] = None,
        logits_warper: Optional[FlaxLogitsProcessorList] = None,
        trace: bool = True,
        params: Optional[Dict[str, jnp.ndarray]] = None,
        model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
    ):
        # init values
        max_length = max_length if max_length is not None else self.generation_config.max_length
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
        prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0)

        batch_size, cur_len = input_ids.shape

        eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None)
        pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32)
        cur_len = jnp.array(cur_len)

        # per batch-item holding current token in loop.
        sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32)
        sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0))

        # per batch-item state bit indicating if sentence has finished.
        is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_)

        # For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
        # and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
        model = self.decode if self.config.is_encoder_decoder else self

        # initialize model specific kwargs
        model_kwargs = self.prepare_inputs_for_generation(input_ids, max_length, **model_kwargs)

        # initialize state
        state = SampleState(
            cur_len=cur_len,
            sequences=sequences,
            running_token=input_ids,
            is_sent_finished=is_sent_finished,
            prng_key=prng_key,
            model_kwargs=model_kwargs,
        )

        def sample_search_cond_fn(state):
            """state termination condition fn."""
            has_reached_max_length = state.cur_len == max_length
            all_sequence_finished = jnp.all(state.is_sent_finished)
            finish_generation = jnp.logical_or(has_reached_max_length, all_sequence_finished)
            return ~finish_generation

        def sample_search_body_fn(state):
            """state update fn."""
            prng_key, prng_key_next = jax.random.split(state.prng_key)
            model_outputs = model(state.running_token, params=params, **state.model_kwargs)

            logits = model_outputs.logits[:, -1]

            # apply min_length, ...
            logits = logits_processor(state.sequences, logits, state.cur_len)
            # apply top_p, top_k, temperature
            logits = logits_warper(logits, logits, state.cur_len)

            next_token = jax.random.categorical(prng_key, logits, axis=-1)

            next_is_sent_finished = state.is_sent_finished | (next_token == eos_token_id)
            next_token = next_token * ~next_is_sent_finished + pad_token_id * next_is_sent_finished
            next_token = next_token[:, None]

            next_sequences = lax.dynamic_update_slice(state.sequences, next_token, (0, state.cur_len))
            next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs)

            return SampleState(
                cur_len=state.cur_len + 1,
                sequences=next_sequences,
                running_token=next_token,
                is_sent_finished=next_is_sent_finished,
                model_kwargs=next_model_kwargs,
                prng_key=prng_key_next,
            )

        # The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
        if input_ids.shape[1] > 1:
            state = sample_search_body_fn(state)

        if not trace:
            state = self._run_loop_in_debug(sample_search_cond_fn, sample_search_body_fn, state)
        else:
            state = lax.while_loop(sample_search_cond_fn, sample_search_body_fn, state)

        return FlaxSampleOutput(sequences=state.sequences)

    def _beam_search(
        self,
        input_ids: None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[int] = None,
        length_penalty: Optional[float] = None,
        early_stopping: Optional[Union[bool, str]] = None,
        logits_processor: Optional[FlaxLogitsProcessorList] = None,
        trace: bool = True,
        params: Optional[Dict[str, jnp.ndarray]] = None,
        num_return_sequences: Optional[int] = None,
        model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
    ):
        """
        This beam search function is heavily inspired by Flax's official example:
        https://github.com/google/flax/blob/main/examples/wmt/decode.py
        """

        def flatten_beam_dim(tensor):
            """Flattens the first two dimensions of a non-scalar array."""
            # ignore scalars (e.g. cache index)
            if tensor.ndim == 0:
                return tensor
            return tensor.reshape((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:])

        def unflatten_beam_dim(tensor, batch_size, num_beams):
            """Unflattens the first, flat batch*beam dimension of a non-scalar array."""
            # ignore scalars (e.g. cache index)
            if tensor.ndim == 0:
                return tensor
            return tensor.reshape((batch_size, num_beams) + tensor.shape[1:])

        def gather_beams(nested, beam_indices, batch_size, new_num_beams):
            """
            Gathers the beam slices indexed by beam_indices into new beam array.
            """
            batch_indices = jnp.reshape(
                jnp.arange(batch_size * new_num_beams) // new_num_beams, (batch_size, new_num_beams)
            )

            def gather_fn(tensor):
                # ignore scalars (e.g. cache index)
                if tensor.ndim == 0:
                    return tensor
                else:
                    return tensor[batch_indices, beam_indices]

            return jax.tree_util.tree_map(gather_fn, nested)

        # init values
        max_length = max_length if max_length is not None else self.generation_config.max_length
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
        length_penalty = length_penalty if length_penalty is not None else self.generation_config.length_penalty
        early_stopping = early_stopping if early_stopping is not None else self.generation_config.early_stopping
        num_return_sequences = (
            num_return_sequences if num_return_sequences is not None else self.generation_config.num_return_sequences
        )

        batch_size, num_beams, cur_len = input_ids.shape

        eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None)
        pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32)
        cur_len = jnp.array(cur_len)

        # per batch,beam-item holding current token in loop.
        sequences = jnp.full((batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32)
        running_sequences = jnp.full((batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32)
        running_sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0, 0))

        # per batch,beam-item state bit indicating if sentence has finished.
        is_sent_finished = jnp.zeros((batch_size, num_beams), dtype=jnp.bool_)

        # per batch,beam-item score, logprobs
        running_scores = jnp.tile(jnp.array([0.0] + [np.array(-1.0e7)] * (num_beams - 1)), [batch_size, 1])
        scores = jnp.ones((batch_size, num_beams)) * np.array(-1.0e7)

        # For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
        # and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
        model = self.decode if self.config.is_encoder_decoder else self

        # flatten beam dim
        if "encoder_outputs" in model_kwargs:
            model_kwargs["encoder_outputs"]["last_hidden_state"] = flatten_beam_dim(
                model_kwargs["encoder_outputs"]["last_hidden_state"]
            )
        for kwarg in ["attention_mask", "decoder_attention_mask"]:
            if kwarg in model_kwargs:
                model_kwargs[kwarg] = flatten_beam_dim(model_kwargs[kwarg])

        # initialize model specific kwargs
        model_kwargs = self.prepare_inputs_for_generation(flatten_beam_dim(input_ids), max_length, **model_kwargs)

        # initialize state
        state = BeamSearchState(
            cur_len=cur_len,
            running_sequences=running_sequences,
            running_scores=running_scores,
            sequences=sequences,
            scores=scores,
            is_sent_finished=is_sent_finished,
            model_kwargs=model_kwargs,
        )

        def beam_search_cond_fn(state):
            """beam search state termination condition fn."""

            # 1. is less than max length?
            not_max_length_yet = state.cur_len < max_length

            # 2. can the new beams still improve?
            # early_stopping == False -> apply heuristic = always get the best score from `cur_len`. See the discussion
            # below for more details.
            # https://github.com/huggingface/transformers/pull/20901#issuecomment-1369845565
            # early_stopping == "never" -> compute the best score from max_length or cur_len, depending on the sign of
            #   length_penalty. Positive length_penalty favors longer sequences, thus we use max_length there.
            if early_stopping == "never" and length_penalty > 0.0:
                best_running_score = state.running_scores[:, :1] / (max_length**length_penalty)
            else:
                best_running_score = state.running_scores[:, :1] / (state.cur_len**length_penalty)
            worst_finished_score = jnp.where(
                state.is_sent_finished, jnp.min(state.scores, axis=1, keepdims=True), np.array(-1.0e7)
            )
            improvement_still_possible = jnp.any(best_running_score > worst_finished_score)

            # 3. is there still a beam that has not finished?
            still_open_beam = ~(jnp.all(state.is_sent_finished) & (early_stopping is True))

            return not_max_length_yet & still_open_beam & improvement_still_possible

        def beam_search_body_fn(state, input_ids_length=1):
            """beam search state update fn."""
            # 1. Forward current tokens
            # Collect the current position slice along length to feed the fast
            # autoregressive decoder model.  Flatten the beam dimension into batch
            # dimension for feeding into the model.
            # unflatten beam dimension
            # Unflatten beam dimension in attention cache arrays
            input_token = flatten_beam_dim(
                lax.dynamic_slice(
                    state.running_sequences,
                    (0, 0, state.cur_len - input_ids_length),
                    (batch_size, num_beams, input_ids_length),
                )
            )
            model_outputs = model(input_token, params=params, **state.model_kwargs)

            logits = unflatten_beam_dim(model_outputs.logits[:, -1], batch_size, num_beams)
            cache = jax.tree_util.tree_map(
                lambda tensor: unflatten_beam_dim(tensor, batch_size, num_beams), model_outputs.past_key_values
            )

            # adapt logits for FlaxMarianMTModel
            logits = self._adapt_logits_for_beam_search(logits)

            # 2. Compute log probs
            # get log probabilities from logits,
            # process logits with processors (*e.g.* min_length, ...), and
            # add new logprobs to existing running logprobs scores.
            log_probs = jax.nn.log_softmax(logits)
            log_probs = logits_processor(
                flatten_beam_dim(running_sequences), flatten_beam_dim(log_probs), state.cur_len
            )
            log_probs = unflatten_beam_dim(log_probs, batch_size, num_beams)
            log_probs = log_probs + jnp.expand_dims(state.running_scores, axis=2)
            vocab_size = log_probs.shape[2]
            log_probs = log_probs.reshape((batch_size, num_beams * vocab_size))

            # 3. Retrieve top-K
            # Each item in batch has num_beams * vocab_size candidate sequences.
            # For each item, get the top 2*k candidates with the highest log-
            # probabilities. We gather the top 2*K beams here so that even if the best
            # K sequences reach EOS simultaneously, we have another K sequences
            # remaining to continue the live beam search.
            # Gather the top 2*K scores from _all_ beams.
            # Gather 2*k top beams.
            # Recover the beam index by floor division.
            # Recover token id by modulo division and expand Id array for broadcasting.
            # Update sequences for the 2*K top-k new sequences.
            beams_to_keep = 2 * num_beams
            topk_log_probs, topk_indices = lax.top_k(log_probs, k=beams_to_keep)
            topk_beam_indices = topk_indices // vocab_size
            topk_running_sequences = gather_beams(
                state.running_sequences, topk_beam_indices, batch_size, beams_to_keep
            )
            topk_ids = jnp.expand_dims(topk_indices % vocab_size, axis=2)
            topk_sequences = lax.dynamic_update_slice(topk_running_sequences, topk_ids, (0, 0, state.cur_len))

            # 4. Check which sequences have ended
            # Update current sequences:
            # Did any of these sequences reach an end marker?
            # To prevent these just finished sequences from being added to the current sequences
            # set of active beam search sequences, set their log probs to a very large
            # negative value.
            did_topk_just_finished = topk_sequences[:, :, state.cur_len] == eos_token_id
            running_topk_log_probs = topk_log_probs + did_topk_just_finished * np.array(-1.0e7)
            # 5. Get running sequences scores for next
            # Determine the top k beam indices (from top 2*k beams) from log probs
            # and gather top k beams (from top 2*k beams).
            next_topk_indices = lax.top_k(running_topk_log_probs, k=num_beams)[1]
            next_running_sequences, next_running_scores = gather_beams(
                [topk_sequences, running_topk_log_probs], next_topk_indices, batch_size, num_beams
            )

            # 6. Process topk logits
            # Further process log probs:
            # - add length penalty
            # - make sure no scores can be added anymore if beam is full
            # - make sure still running sequences cannot be chosen as finalized beam
            topk_log_probs = topk_log_probs / (state.cur_len**length_penalty)
            beams_in_batch_are_full = jnp.broadcast_to(
                state.is_sent_finished.all(axis=-1, keepdims=True), did_topk_just_finished.shape
            ) & (early_stopping is True)
            add_penalty = ~did_topk_just_finished | beams_in_batch_are_full
            topk_log_probs += add_penalty * np.array(-1.0e7)

            # 7. Get scores, sequences, is sentence finished for next.
            # Combine sequences, scores, and flags along the beam dimension and compare
            # new finished sequence scores to existing finished scores and select the
            # best from the new set of beams
            merged_sequences = jnp.concatenate([state.sequences, topk_sequences], axis=1)
            merged_scores = jnp.concatenate([state.scores, topk_log_probs], axis=1)
            merged_is_sent_finished = jnp.concatenate([state.is_sent_finished, did_topk_just_finished], axis=1)
            topk_merged_indices = lax.top_k(merged_scores, k=num_beams)[1]
            next_sequences, next_scores, next_is_sent_finished = gather_beams(
                [merged_sequences, merged_scores, merged_is_sent_finished], topk_merged_indices, batch_size, num_beams
            )

            # 8. Update model kwargs.
            # Determine the top k beam indices from the original set of all beams.
            # With these, gather the top k beam-associated caches.
            next_running_indices = gather_beams(topk_beam_indices, next_topk_indices, batch_size, num_beams)
            next_cache = gather_beams(cache, next_running_indices, batch_size, num_beams)
            model_outputs["past_key_values"] = jax.tree_util.tree_map(lambda x: flatten_beam_dim(x), next_cache)
            next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs)

            return BeamSearchState(
                cur_len=state.cur_len + 1,
                running_scores=next_running_scores,
                running_sequences=next_running_sequences,
                scores=next_scores,
                sequences=next_sequences,
                is_sent_finished=next_is_sent_finished,
                model_kwargs=next_model_kwargs,
            )

        # The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
        if input_ids.shape[-1] > 1:
            state = partial(beam_search_body_fn, input_ids_length=input_ids.shape[-1])(state)

        if not trace:
            state = self._run_loop_in_debug(beam_search_cond_fn, beam_search_body_fn, state)
        else:
            state = lax.while_loop(beam_search_cond_fn, beam_search_body_fn, state)

        # Account for the edge-case where there are no finished sequences for a
        # particular batch item. If so, return running sequences for that batch item.
        none_finished = jnp.any(state.is_sent_finished, axis=1)
        sequences = jnp.where(none_finished[:, None, None], state.sequences, state.running_sequences)
        scores = jnp.where(none_finished[:, None], state.scores, state.running_scores)

        # Take best beams for each batch (the score is sorted in descending order)
        sequences = flatten_beam_dim(sequences[:, :num_return_sequences, :])
        scores = flatten_beam_dim(scores[:, :num_return_sequences])

        return FlaxBeamSearchOutput(sequences=sequences, scores=scores)