Spaces:
Runtime error
Runtime error
File size: 49,500 Bytes
f8f5cdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 |
# coding=utf-8
# Copyright 2021 The Google AI Flax Team Authors, and The HuggingFace Inc. team.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import inspect
import warnings
from functools import partial
from typing import Any, Dict, Optional, Union
import flax
import jax
import jax.numpy as jnp
import numpy as np
from jax import lax
from ..models.auto import (
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING,
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING,
)
from ..utils import ModelOutput, logging
from .configuration_utils import GenerationConfig
from .flax_logits_process import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxForceTokensLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxSuppressTokensAtBeginLogitsProcessor,
FlaxSuppressTokensLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
logger = logging.get_logger(__name__)
@flax.struct.dataclass
class FlaxGreedySearchOutput(ModelOutput):
"""
Flax Base class for outputs of decoder-only generation models using greedy search.
Args:
sequences (`jnp.ndarray` of shape `(batch_size, max_length)`):
The generated sequences.
"""
sequences: jnp.ndarray = None
@flax.struct.dataclass
class FlaxSampleOutput(ModelOutput):
"""
Flax Base class for outputs of decoder-only generation models using sampling.
Args:
sequences (`jnp.ndarray` of shape `(batch_size, max_length)`):
The generated sequences.
"""
sequences: jnp.ndarray = None
@flax.struct.dataclass
class FlaxBeamSearchOutput(ModelOutput):
"""
Flax Base class for outputs of decoder-only generation models using greedy search.
Args:
sequences (`jnp.ndarray` of shape `(batch_size, max_length)`):
The generated sequences.
scores (`jnp.ndarray` of shape `(batch_size,)`):
The scores (log probabilities) of the generated sequences.
"""
sequences: jnp.ndarray = None
scores: jnp.ndarray = None
@flax.struct.dataclass
class GreedyState:
cur_len: jnp.ndarray
sequences: jnp.ndarray
running_token: jnp.ndarray
is_sent_finished: jnp.ndarray
model_kwargs: Dict[str, jnp.ndarray]
@flax.struct.dataclass
class SampleState:
cur_len: jnp.ndarray
sequences: jnp.ndarray
running_token: jnp.ndarray
is_sent_finished: jnp.ndarray
prng_key: jnp.ndarray
model_kwargs: Dict[str, jnp.ndarray]
@flax.struct.dataclass
class BeamSearchState:
cur_len: jnp.ndarray
running_sequences: jnp.ndarray
running_scores: jnp.ndarray
sequences: jnp.ndarray
scores: jnp.ndarray
is_sent_finished: jnp.ndarray
model_kwargs: Dict[str, jnp.ndarray]
class FlaxGenerationMixin:
"""
A class containing all functions for auto-regressive text generation, to be used as a mixin in
[`FlaxPreTrainedModel`].
The class exposes [`~generation.FlaxGenerationMixin.generate`], which can be used for:
- *greedy decoding* by calling [`~generation.FlaxGenerationMixin._greedy_search`] if `num_beams=1` and
`do_sample=False`
- *multinomial sampling* by calling [`~generation.FlaxGenerationMixin._sample`] if `num_beams=1` and
`do_sample=True`
- *beam-search decoding* by calling [`~generation.FlaxGenerationMixin._beam_search`] if `num_beams>1` and
`do_sample=False`
You do not need to call any of the above methods directly. Pass custom parameter values to 'generate' instead. To
learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies).
"""
def prepare_inputs_for_generation(self, *args, **kwargs):
raise NotImplementedError(
"A model class needs to define a `prepare_inputs_for_generation` method in order to use `generate`."
)
@staticmethod
def _run_loop_in_debug(cond_fn, body_fn, init_state):
"""
Run generation in untraced mode. This should only be used for debugging purposes.
"""
state = init_state
while cond_fn(state):
state = body_fn(state)
return state
def _prepare_encoder_decoder_kwargs_for_generation(self, input_ids, params, model_kwargs):
encoder_kwargs = {
argument: value
for argument, value in model_kwargs.items()
if not (argument.startswith("decoder_") or argument.startswith("cross_attn"))
}
model_kwargs["encoder_outputs"] = self.encode(input_ids, params=params, return_dict=True, **encoder_kwargs)
return model_kwargs
def _prepare_decoder_input_ids_for_generation(
self,
batch_size: int,
decoder_start_token_id: int = None,
bos_token_id: int = None,
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
) -> jnp.ndarray:
if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
# Only use this arg if not None, otherwise just remove from model_kwargs
decoder_input_ids = model_kwargs.pop("decoder_input_ids")
if decoder_input_ids is not None:
return decoder_input_ids
decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id)
return jnp.array(decoder_start_token_id, dtype="i4").reshape(1, -1).repeat(batch_size, axis=0)
def _get_decoder_start_token_id(self, decoder_start_token_id: int = None, bos_token_id: int = None) -> int:
# retrieve decoder_start_token_id for encoder-decoder models
# fall back to bos_token_id if necessary
decoder_start_token_id = (
decoder_start_token_id
if decoder_start_token_id is not None
else self.generation_config.decoder_start_token_id
)
bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id
if decoder_start_token_id is not None:
return decoder_start_token_id
elif (
hasattr(self.config, "decoder")
and hasattr(self.config.decoder, "decoder_start_token_id")
and self.config.decoder.decoder_start_token_id is not None
):
return self.config.decoder.decoder_start_token_id
elif bos_token_id is not None:
return bos_token_id
elif (
hasattr(self.config, "decoder")
and hasattr(self.config.decoder, "bos_token_id")
and self.config.decoder.bos_token_id is not None
):
return self.config.decoder.bos_token_id
raise ValueError(
"`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
)
@staticmethod
def _expand_to_num_beams(tensor, num_beams):
return jnp.broadcast_to(tensor[:, None], (tensor.shape[0], num_beams) + tensor.shape[1:])
def _adapt_logits_for_beam_search(self, logits):
"""
This function can be overwritten in the specific modeling_flax_<model-name>.py classes to allow for custom beam
search behavior. Note that the only model that overwrites this method is [`~transformes.FlaxMarianMTModel`].
"""
return logits
def _validate_model_class(self):
"""
Confirms that the model class is compatible with generation. If not, raises an exception that points to the
right class to use.
"""
if not self.can_generate():
generate_compatible_mappings = [
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING,
FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING,
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
]
generate_compatible_classes = set()
for model_mapping in generate_compatible_mappings:
supported_models = model_mapping.get(type(self.config), default=None)
if supported_models is not None:
generate_compatible_classes.add(supported_models.__name__)
exception_message = (
f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as "
"it doesn't have a language model head."
)
if generate_compatible_classes:
exception_message += f" Please use one of the following classes instead: {generate_compatible_classes}"
raise TypeError(exception_message)
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
"""Validates model kwargs for generation. Generate argument typos will also be caught here."""
unused_model_args = []
model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters)
# `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If
# `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;)
if "kwargs" in model_args or "model_kwargs" in model_args:
model_args |= set(inspect.signature(self.__call__).parameters)
for key, value in model_kwargs.items():
if value is not None and key not in model_args:
unused_model_args.append(key)
if unused_model_args:
raise ValueError(
f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the"
" generate arguments will also show up in this list)"
)
def generate(
self,
input_ids: jnp.ndarray,
generation_config: Optional[GenerationConfig] = None,
prng_key: Optional[jnp.ndarray] = None,
trace: bool = True,
params: Optional[Dict[str, jnp.ndarray]] = None,
logits_processor: Optional[FlaxLogitsProcessorList] = None,
**kwargs,
):
r"""
Generates sequences of token ids for models with a language modeling head.
Parameters:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
trace (`bool`, *optional*, defaults to `True`):
Whether to trace generation. Setting `trace=False` should only be used for debugging and will lead to a
considerably slower runtime.
params (`Dict[str, jnp.ndarray]`, *optional*):
Optionally the model parameters can be passed. Can be useful for parallelized generation.
logits_processor (`FlaxLogitsProcessorList `, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
Return:
[`~utils.ModelOutput`].
"""
# Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
self._validate_model_class()
# priority: `generation_config` argument > `model.generation_config` (the default generation config)
if generation_config is None:
# legacy: users may modify the model configuration to control generation. To trigger this legacy behavior,
# two conditions must be met
# 1) the generation config must have been created from the model config (`_from_model_config` field);
# 2) the generation config must have seen no modification since its creation (the hash is the same).
if self.generation_config._from_model_config and self.generation_config._original_object_hash == hash(
self.generation_config
):
new_generation_config = GenerationConfig.from_model_config(self.config)
if new_generation_config != self.generation_config:
warnings.warn(
"You have modified the pretrained model configuration to control generation. This is a"
" deprecated strategy to control generation and will be removed soon, in a future version."
" Please use and modify the model generation configuration (see"
" https://huggingface.co./docs/transformers/generation_strategies#default-text-generation-configuration )"
)
self.generation_config = new_generation_config
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
generation_config.validate()
self._validate_model_kwargs(model_kwargs.copy())
logits_processor = logits_processor if logits_processor is not None else FlaxLogitsProcessorList()
# set init values
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0)
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
if model_kwargs.get("attention_mask") is None:
logger.warning(
"The attention mask and the pad token id were not set. As a consequence, you may observe "
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
)
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, list):
eos_token_id = eos_token_id[0]
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
generation_config.pad_token_id = eos_token_id
if generation_config.decoder_start_token_id is None and self.config.is_encoder_decoder:
raise ValueError("`decoder_start_token_id` has to be defined for encoder-decoder generation.")
# decoder-only models should use left-padding for generation (can't be checked with `trace=True`)
if not self.config.is_encoder_decoder and not trace:
if (
generation_config.pad_token_id is not None
and jnp.sum(input_ids[:, -1] == generation_config.pad_token_id) > 0
):
logger.warning(
"A decoder-only architecture is being used, but right-padding was detected! For correct "
"generation results, please set `padding_side='left'` when initializing the tokenizer."
)
batch_size = input_ids.shape[0]
if self.config.is_encoder_decoder:
# add encoder_outputs to model_kwargs
if model_kwargs.get("encoder_outputs") is None:
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(input_ids, params, model_kwargs)
# prepare decoder_input_ids for generation
input_ids = self._prepare_decoder_input_ids_for_generation(
batch_size,
decoder_start_token_id=generation_config.decoder_start_token_id,
bos_token_id=generation_config.bos_token_id,
model_kwargs=model_kwargs,
)
# Prepare `max_length` depending on other stopping criteria.
input_ids_seq_length = input_ids.shape[-1]
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20:
# 20 is the default max_length of the generation config
warnings.warn(
f"Using the model-agnostic default `max_length` (={generation_config.max_length}) "
"to control the generation length. recommend setting `max_new_tokens` to control the maximum length of the generation.",
UserWarning,
)
elif generation_config.max_new_tokens is not None:
if not has_default_max_length and generation_config.max_length is not None:
logger.warning(
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
"Please refer to the documentation for more information. "
"(https://huggingface.co./docs/transformers/main/en/main_classes/text_generation)"
)
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length:
raise ValueError(
f"Unfeasable length constraints: the minimum length ({generation_config.min_length}) is larger than"
f" the maximum length ({generation_config.max_length})"
)
if input_ids_seq_length >= generation_config.max_length:
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
logger.warning(
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
" increasing`max_new_tokens`."
)
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
logits_processor=logits_processor,
)
if not generation_config.do_sample and generation_config.num_beams == 1:
return self._greedy_search(
input_ids,
generation_config.max_length,
generation_config.pad_token_id,
generation_config.eos_token_id,
logits_processor=logits_processor,
trace=trace,
params=params,
model_kwargs=model_kwargs,
)
elif generation_config.do_sample and generation_config.num_beams == 1:
logits_warper = self._get_logits_warper(generation_config=generation_config)
return self._sample(
input_ids,
generation_config.max_length,
generation_config.pad_token_id,
generation_config.eos_token_id,
prng_key,
logits_warper=logits_warper,
logits_processor=logits_processor,
trace=trace,
params=params,
model_kwargs=model_kwargs,
)
elif not generation_config.do_sample and generation_config.num_beams > 1:
# broadcast input_ids & encoder_outputs
input_ids = self._expand_to_num_beams(input_ids, num_beams=generation_config.num_beams)
if "encoder_outputs" in model_kwargs:
model_kwargs["encoder_outputs"]["last_hidden_state"] = self._expand_to_num_beams(
model_kwargs["encoder_outputs"]["last_hidden_state"], num_beams=generation_config.num_beams
)
for kwarg in ["attention_mask", "decoder_attention_mask"]:
if kwarg in model_kwargs:
model_kwargs[kwarg] = self._expand_to_num_beams(
model_kwargs[kwarg], num_beams=generation_config.num_beams
)
return self._beam_search(
input_ids,
generation_config.max_length,
generation_config.pad_token_id,
generation_config.eos_token_id,
length_penalty=generation_config.length_penalty,
early_stopping=generation_config.early_stopping,
logits_processor=logits_processor,
trace=trace,
params=params,
num_return_sequences=generation_config.num_return_sequences,
model_kwargs=model_kwargs,
)
else:
raise NotImplementedError("`Beam sampling is currently not implemented.")
def _get_logits_warper(self, generation_config: GenerationConfig) -> FlaxLogitsProcessorList:
"""
This class returns a [`FlaxLogitsProcessorList`] list object that contains all relevant [`FlaxLogitsWarper`]
instances used for multinomial sampling.
"""
warpers = FlaxLogitsProcessorList()
if generation_config.temperature is not None and generation_config.temperature != 1.0:
warpers.append(FlaxTemperatureLogitsWarper(generation_config.temperature))
if generation_config.top_k is not None and generation_config.top_k != 0:
warpers.append(FlaxTopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=1))
if generation_config.top_p is not None and generation_config.top_p < 1.0:
warpers.append(FlaxTopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=1))
return warpers
def _get_logits_processor(
self,
generation_config: GenerationConfig,
input_ids_seq_length: int,
logits_processor: Optional[FlaxLogitsProcessorList],
) -> FlaxLogitsProcessorList:
"""
This class returns a [`FlaxLogitsProcessorList`] list object that contains all relevant [`FlaxLogitsProcessor`]
instances used to modify the scores of the language model head.
"""
processors = FlaxLogitsProcessorList()
if (
generation_config.min_length is not None
and generation_config.eos_token_id is not None
and generation_config.min_length > -1
):
processors.append(
FlaxMinLengthLogitsProcessor(generation_config.min_length, generation_config.eos_token_id)
)
if generation_config.forced_bos_token_id is not None:
processors.append(FlaxForcedBOSTokenLogitsProcessor(generation_config.forced_bos_token_id))
if generation_config.forced_eos_token_id is not None:
processors.append(
FlaxForcedEOSTokenLogitsProcessor(generation_config.max_length, generation_config.forced_eos_token_id)
)
if generation_config.suppress_tokens is not None:
processors.append(FlaxSuppressTokensLogitsProcessor(generation_config.suppress_tokens))
if generation_config.begin_suppress_tokens is not None:
begin_index = input_ids_seq_length
begin_index = (
begin_index
if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None)
else begin_index + 1
)
if generation_config.forced_decoder_ids is not None and len(generation_config.forced_decoder_ids) > 0:
# generation starts after the last token that is forced
begin_index += generation_config.forced_decoder_ids[-1][0]
processors.append(
FlaxSuppressTokensAtBeginLogitsProcessor(generation_config.begin_suppress_tokens, begin_index)
)
if generation_config.forced_decoder_ids is not None:
forced_decoder_ids = [
[input_ids_seq_length + i[0] - 1, i[1]] for i in generation_config.forced_decoder_ids
]
processors.append(FlaxForceTokensLogitsProcessor(forced_decoder_ids))
processors = self._merge_criteria_processor_list(processors, logits_processor)
return processors
def _merge_criteria_processor_list(
self,
default_list: FlaxLogitsProcessorList,
custom_list: FlaxLogitsProcessorList,
) -> FlaxLogitsProcessorList:
if len(custom_list) == 0:
return default_list
for default in default_list:
for custom in custom_list:
if type(custom) is type(default):
object_type = "logits processor"
raise ValueError(
f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to"
f" `generate`, but it has already been created with the values {default}. {default} has been"
" created by passing the corresponding arguments to generate or by the model's config default"
f" values. If you just want to change the default values of {object_type} consider passing"
f" them as arguments to `generate` instead of using a custom {object_type}."
)
default_list.extend(custom_list)
return default_list
def _greedy_search(
self,
input_ids: None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
logits_processor: Optional[FlaxLogitsProcessorList] = None,
trace: bool = True,
params: Optional[Dict[str, jnp.ndarray]] = None,
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
):
# init values
max_length = max_length if max_length is not None else self.generation_config.max_length
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
batch_size, cur_len = input_ids.shape
eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None)
pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32)
cur_len = jnp.array(cur_len)
# per batch-item holding current token in loop.
sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32)
sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0))
# per batch-item state bit indicating if sentence has finished.
is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_)
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
model = self.decode if self.config.is_encoder_decoder else self
# initialize model specific kwargs
model_kwargs = self.prepare_inputs_for_generation(input_ids, max_length, **model_kwargs)
# initialize state
state = GreedyState(
cur_len=cur_len,
sequences=sequences,
running_token=input_ids,
is_sent_finished=is_sent_finished,
model_kwargs=model_kwargs,
)
def greedy_search_cond_fn(state):
"""state termination condition fn."""
has_reached_max_length = state.cur_len == max_length
all_sequence_finished = jnp.all(state.is_sent_finished)
finish_generation = jnp.logical_or(has_reached_max_length, all_sequence_finished)
return ~finish_generation
def greedy_search_body_fn(state):
"""state update fn."""
model_outputs = model(state.running_token, params=params, **state.model_kwargs)
logits = model_outputs.logits[:, -1]
# apply min_length, ...
logits = logits_processor(state.sequences, logits, state.cur_len)
next_token = jnp.argmax(logits, axis=-1)
next_token = next_token * ~state.is_sent_finished + pad_token_id * state.is_sent_finished
next_is_sent_finished = state.is_sent_finished | (next_token == eos_token_id)
next_token = next_token[:, None]
next_sequences = lax.dynamic_update_slice(state.sequences, next_token, (0, state.cur_len))
next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs)
return GreedyState(
cur_len=state.cur_len + 1,
sequences=next_sequences,
running_token=next_token,
is_sent_finished=next_is_sent_finished,
model_kwargs=next_model_kwargs,
)
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
if input_ids.shape[1] > 1:
state = greedy_search_body_fn(state)
if not trace:
state = self._run_loop_in_debug(greedy_search_cond_fn, greedy_search_body_fn, state)
else:
state = lax.while_loop(greedy_search_cond_fn, greedy_search_body_fn, state)
return FlaxGreedySearchOutput(sequences=state.sequences)
def _sample(
self,
input_ids: None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
prng_key: Optional[jnp.ndarray] = None,
logits_processor: Optional[FlaxLogitsProcessorList] = None,
logits_warper: Optional[FlaxLogitsProcessorList] = None,
trace: bool = True,
params: Optional[Dict[str, jnp.ndarray]] = None,
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
):
# init values
max_length = max_length if max_length is not None else self.generation_config.max_length
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0)
batch_size, cur_len = input_ids.shape
eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None)
pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32)
cur_len = jnp.array(cur_len)
# per batch-item holding current token in loop.
sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32)
sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0))
# per batch-item state bit indicating if sentence has finished.
is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_)
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
model = self.decode if self.config.is_encoder_decoder else self
# initialize model specific kwargs
model_kwargs = self.prepare_inputs_for_generation(input_ids, max_length, **model_kwargs)
# initialize state
state = SampleState(
cur_len=cur_len,
sequences=sequences,
running_token=input_ids,
is_sent_finished=is_sent_finished,
prng_key=prng_key,
model_kwargs=model_kwargs,
)
def sample_search_cond_fn(state):
"""state termination condition fn."""
has_reached_max_length = state.cur_len == max_length
all_sequence_finished = jnp.all(state.is_sent_finished)
finish_generation = jnp.logical_or(has_reached_max_length, all_sequence_finished)
return ~finish_generation
def sample_search_body_fn(state):
"""state update fn."""
prng_key, prng_key_next = jax.random.split(state.prng_key)
model_outputs = model(state.running_token, params=params, **state.model_kwargs)
logits = model_outputs.logits[:, -1]
# apply min_length, ...
logits = logits_processor(state.sequences, logits, state.cur_len)
# apply top_p, top_k, temperature
logits = logits_warper(logits, logits, state.cur_len)
next_token = jax.random.categorical(prng_key, logits, axis=-1)
next_is_sent_finished = state.is_sent_finished | (next_token == eos_token_id)
next_token = next_token * ~next_is_sent_finished + pad_token_id * next_is_sent_finished
next_token = next_token[:, None]
next_sequences = lax.dynamic_update_slice(state.sequences, next_token, (0, state.cur_len))
next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs)
return SampleState(
cur_len=state.cur_len + 1,
sequences=next_sequences,
running_token=next_token,
is_sent_finished=next_is_sent_finished,
model_kwargs=next_model_kwargs,
prng_key=prng_key_next,
)
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
if input_ids.shape[1] > 1:
state = sample_search_body_fn(state)
if not trace:
state = self._run_loop_in_debug(sample_search_cond_fn, sample_search_body_fn, state)
else:
state = lax.while_loop(sample_search_cond_fn, sample_search_body_fn, state)
return FlaxSampleOutput(sequences=state.sequences)
def _beam_search(
self,
input_ids: None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
length_penalty: Optional[float] = None,
early_stopping: Optional[Union[bool, str]] = None,
logits_processor: Optional[FlaxLogitsProcessorList] = None,
trace: bool = True,
params: Optional[Dict[str, jnp.ndarray]] = None,
num_return_sequences: Optional[int] = None,
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
):
"""
This beam search function is heavily inspired by Flax's official example:
https://github.com/google/flax/blob/main/examples/wmt/decode.py
"""
def flatten_beam_dim(tensor):
"""Flattens the first two dimensions of a non-scalar array."""
# ignore scalars (e.g. cache index)
if tensor.ndim == 0:
return tensor
return tensor.reshape((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:])
def unflatten_beam_dim(tensor, batch_size, num_beams):
"""Unflattens the first, flat batch*beam dimension of a non-scalar array."""
# ignore scalars (e.g. cache index)
if tensor.ndim == 0:
return tensor
return tensor.reshape((batch_size, num_beams) + tensor.shape[1:])
def gather_beams(nested, beam_indices, batch_size, new_num_beams):
"""
Gathers the beam slices indexed by beam_indices into new beam array.
"""
batch_indices = jnp.reshape(
jnp.arange(batch_size * new_num_beams) // new_num_beams, (batch_size, new_num_beams)
)
def gather_fn(tensor):
# ignore scalars (e.g. cache index)
if tensor.ndim == 0:
return tensor
else:
return tensor[batch_indices, beam_indices]
return jax.tree_util.tree_map(gather_fn, nested)
# init values
max_length = max_length if max_length is not None else self.generation_config.max_length
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
length_penalty = length_penalty if length_penalty is not None else self.generation_config.length_penalty
early_stopping = early_stopping if early_stopping is not None else self.generation_config.early_stopping
num_return_sequences = (
num_return_sequences if num_return_sequences is not None else self.generation_config.num_return_sequences
)
batch_size, num_beams, cur_len = input_ids.shape
eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None)
pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32)
cur_len = jnp.array(cur_len)
# per batch,beam-item holding current token in loop.
sequences = jnp.full((batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32)
running_sequences = jnp.full((batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32)
running_sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0, 0))
# per batch,beam-item state bit indicating if sentence has finished.
is_sent_finished = jnp.zeros((batch_size, num_beams), dtype=jnp.bool_)
# per batch,beam-item score, logprobs
running_scores = jnp.tile(jnp.array([0.0] + [np.array(-1.0e7)] * (num_beams - 1)), [batch_size, 1])
scores = jnp.ones((batch_size, num_beams)) * np.array(-1.0e7)
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
model = self.decode if self.config.is_encoder_decoder else self
# flatten beam dim
if "encoder_outputs" in model_kwargs:
model_kwargs["encoder_outputs"]["last_hidden_state"] = flatten_beam_dim(
model_kwargs["encoder_outputs"]["last_hidden_state"]
)
for kwarg in ["attention_mask", "decoder_attention_mask"]:
if kwarg in model_kwargs:
model_kwargs[kwarg] = flatten_beam_dim(model_kwargs[kwarg])
# initialize model specific kwargs
model_kwargs = self.prepare_inputs_for_generation(flatten_beam_dim(input_ids), max_length, **model_kwargs)
# initialize state
state = BeamSearchState(
cur_len=cur_len,
running_sequences=running_sequences,
running_scores=running_scores,
sequences=sequences,
scores=scores,
is_sent_finished=is_sent_finished,
model_kwargs=model_kwargs,
)
def beam_search_cond_fn(state):
"""beam search state termination condition fn."""
# 1. is less than max length?
not_max_length_yet = state.cur_len < max_length
# 2. can the new beams still improve?
# early_stopping == False -> apply heuristic = always get the best score from `cur_len`. See the discussion
# below for more details.
# https://github.com/huggingface/transformers/pull/20901#issuecomment-1369845565
# early_stopping == "never" -> compute the best score from max_length or cur_len, depending on the sign of
# length_penalty. Positive length_penalty favors longer sequences, thus we use max_length there.
if early_stopping == "never" and length_penalty > 0.0:
best_running_score = state.running_scores[:, :1] / (max_length**length_penalty)
else:
best_running_score = state.running_scores[:, :1] / (state.cur_len**length_penalty)
worst_finished_score = jnp.where(
state.is_sent_finished, jnp.min(state.scores, axis=1, keepdims=True), np.array(-1.0e7)
)
improvement_still_possible = jnp.any(best_running_score > worst_finished_score)
# 3. is there still a beam that has not finished?
still_open_beam = ~(jnp.all(state.is_sent_finished) & (early_stopping is True))
return not_max_length_yet & still_open_beam & improvement_still_possible
def beam_search_body_fn(state, input_ids_length=1):
"""beam search state update fn."""
# 1. Forward current tokens
# Collect the current position slice along length to feed the fast
# autoregressive decoder model. Flatten the beam dimension into batch
# dimension for feeding into the model.
# unflatten beam dimension
# Unflatten beam dimension in attention cache arrays
input_token = flatten_beam_dim(
lax.dynamic_slice(
state.running_sequences,
(0, 0, state.cur_len - input_ids_length),
(batch_size, num_beams, input_ids_length),
)
)
model_outputs = model(input_token, params=params, **state.model_kwargs)
logits = unflatten_beam_dim(model_outputs.logits[:, -1], batch_size, num_beams)
cache = jax.tree_util.tree_map(
lambda tensor: unflatten_beam_dim(tensor, batch_size, num_beams), model_outputs.past_key_values
)
# adapt logits for FlaxMarianMTModel
logits = self._adapt_logits_for_beam_search(logits)
# 2. Compute log probs
# get log probabilities from logits,
# process logits with processors (*e.g.* min_length, ...), and
# add new logprobs to existing running logprobs scores.
log_probs = jax.nn.log_softmax(logits)
log_probs = logits_processor(
flatten_beam_dim(running_sequences), flatten_beam_dim(log_probs), state.cur_len
)
log_probs = unflatten_beam_dim(log_probs, batch_size, num_beams)
log_probs = log_probs + jnp.expand_dims(state.running_scores, axis=2)
vocab_size = log_probs.shape[2]
log_probs = log_probs.reshape((batch_size, num_beams * vocab_size))
# 3. Retrieve top-K
# Each item in batch has num_beams * vocab_size candidate sequences.
# For each item, get the top 2*k candidates with the highest log-
# probabilities. We gather the top 2*K beams here so that even if the best
# K sequences reach EOS simultaneously, we have another K sequences
# remaining to continue the live beam search.
# Gather the top 2*K scores from _all_ beams.
# Gather 2*k top beams.
# Recover the beam index by floor division.
# Recover token id by modulo division and expand Id array for broadcasting.
# Update sequences for the 2*K top-k new sequences.
beams_to_keep = 2 * num_beams
topk_log_probs, topk_indices = lax.top_k(log_probs, k=beams_to_keep)
topk_beam_indices = topk_indices // vocab_size
topk_running_sequences = gather_beams(
state.running_sequences, topk_beam_indices, batch_size, beams_to_keep
)
topk_ids = jnp.expand_dims(topk_indices % vocab_size, axis=2)
topk_sequences = lax.dynamic_update_slice(topk_running_sequences, topk_ids, (0, 0, state.cur_len))
# 4. Check which sequences have ended
# Update current sequences:
# Did any of these sequences reach an end marker?
# To prevent these just finished sequences from being added to the current sequences
# set of active beam search sequences, set their log probs to a very large
# negative value.
did_topk_just_finished = topk_sequences[:, :, state.cur_len] == eos_token_id
running_topk_log_probs = topk_log_probs + did_topk_just_finished * np.array(-1.0e7)
# 5. Get running sequences scores for next
# Determine the top k beam indices (from top 2*k beams) from log probs
# and gather top k beams (from top 2*k beams).
next_topk_indices = lax.top_k(running_topk_log_probs, k=num_beams)[1]
next_running_sequences, next_running_scores = gather_beams(
[topk_sequences, running_topk_log_probs], next_topk_indices, batch_size, num_beams
)
# 6. Process topk logits
# Further process log probs:
# - add length penalty
# - make sure no scores can be added anymore if beam is full
# - make sure still running sequences cannot be chosen as finalized beam
topk_log_probs = topk_log_probs / (state.cur_len**length_penalty)
beams_in_batch_are_full = jnp.broadcast_to(
state.is_sent_finished.all(axis=-1, keepdims=True), did_topk_just_finished.shape
) & (early_stopping is True)
add_penalty = ~did_topk_just_finished | beams_in_batch_are_full
topk_log_probs += add_penalty * np.array(-1.0e7)
# 7. Get scores, sequences, is sentence finished for next.
# Combine sequences, scores, and flags along the beam dimension and compare
# new finished sequence scores to existing finished scores and select the
# best from the new set of beams
merged_sequences = jnp.concatenate([state.sequences, topk_sequences], axis=1)
merged_scores = jnp.concatenate([state.scores, topk_log_probs], axis=1)
merged_is_sent_finished = jnp.concatenate([state.is_sent_finished, did_topk_just_finished], axis=1)
topk_merged_indices = lax.top_k(merged_scores, k=num_beams)[1]
next_sequences, next_scores, next_is_sent_finished = gather_beams(
[merged_sequences, merged_scores, merged_is_sent_finished], topk_merged_indices, batch_size, num_beams
)
# 8. Update model kwargs.
# Determine the top k beam indices from the original set of all beams.
# With these, gather the top k beam-associated caches.
next_running_indices = gather_beams(topk_beam_indices, next_topk_indices, batch_size, num_beams)
next_cache = gather_beams(cache, next_running_indices, batch_size, num_beams)
model_outputs["past_key_values"] = jax.tree_util.tree_map(lambda x: flatten_beam_dim(x), next_cache)
next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs)
return BeamSearchState(
cur_len=state.cur_len + 1,
running_scores=next_running_scores,
running_sequences=next_running_sequences,
scores=next_scores,
sequences=next_sequences,
is_sent_finished=next_is_sent_finished,
model_kwargs=next_model_kwargs,
)
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
if input_ids.shape[-1] > 1:
state = partial(beam_search_body_fn, input_ids_length=input_ids.shape[-1])(state)
if not trace:
state = self._run_loop_in_debug(beam_search_cond_fn, beam_search_body_fn, state)
else:
state = lax.while_loop(beam_search_cond_fn, beam_search_body_fn, state)
# Account for the edge-case where there are no finished sequences for a
# particular batch item. If so, return running sequences for that batch item.
none_finished = jnp.any(state.is_sent_finished, axis=1)
sequences = jnp.where(none_finished[:, None, None], state.sequences, state.running_sequences)
scores = jnp.where(none_finished[:, None], state.scores, state.running_scores)
# Take best beams for each batch (the score is sorted in descending order)
sequences = flatten_beam_dim(sequences[:, :num_return_sequences, :])
scores = flatten_beam_dim(scores[:, :num_return_sequences])
return FlaxBeamSearchOutput(sequences=sequences, scores=scores)
|