File size: 47,827 Bytes
f8f5cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import builtins
import collections
import functools
import inspect
import math
import operator
import os
import random
import warnings
from typing import Any, Callable, Dict, List, Optional, Type, Union

import torch
from torch import nn
from torch.fx import Graph, GraphModule, Proxy, Tracer
from torch.fx._compatibility import compatibility
from torch.fx.proxy import ParameterProxy

from .. import PretrainedConfig, PreTrainedModel, logging
from ..models.auto import get_values
from ..models.auto.modeling_auto import (
    MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_BACKBONE_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_CTC_MAPPING_NAMES,
    MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
    MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
    MODEL_FOR_PRETRAINING_MAPPING_NAMES,
    MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_MAPPING_NAMES,
)
from ..utils import (
    ENV_VARS_TRUE_VALUES,
    TORCH_FX_REQUIRED_VERSION,
    get_torch_version,
    is_peft_available,
    is_torch_fx_available,
)


if is_peft_available():
    from peft import PeftModel


logger = logging.get_logger(__name__)
_IS_IN_DEBUG_MODE = os.environ.get("FX_DEBUG_MODE", "").upper() in ENV_VARS_TRUE_VALUES


def _generate_supported_model_class_names(
    model_name: Type[PretrainedConfig],
    supported_tasks: Optional[Union[str, List[str]]] = None,
) -> List[str]:
    task_mapping = {
        "default": MODEL_MAPPING_NAMES,
        "pretraining": MODEL_FOR_PRETRAINING_MAPPING_NAMES,
        "next-sentence-prediction": MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
        "masked-lm": MODEL_FOR_MASKED_LM_MAPPING_NAMES,
        "causal-lm": MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
        "seq2seq-lm": MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
        "speech-seq2seq": MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES,
        "multiple-choice": MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
        "document-question-answering": MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
        "question-answering": MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
        "sequence-classification": MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
        "token-classification": MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
        "masked-image-modeling": MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
        "image-classification": MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
        "zero-shot-image-classification": MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES,
        "ctc": MODEL_FOR_CTC_MAPPING_NAMES,
        "audio-classification": MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
        "semantic-segmentation": MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
        "backbone": MODEL_FOR_BACKBONE_MAPPING_NAMES,
    }

    if supported_tasks is None:
        supported_tasks = task_mapping.keys()
    if isinstance(supported_tasks, str):
        supported_tasks = [supported_tasks]

    model_class_names = []
    for task in supported_tasks:
        class_name = task_mapping[task].get(model_name, None)
        if class_name:
            model_class_names.append(class_name)

    return model_class_names


_REGULAR_SUPPORTED_MODEL_NAMES_AND_TASKS = [
    "altclip",
    "albert",
    "bart",
    "bert",
    "blenderbot",
    "blenderbot-small",
    "bloom",
    "clip",
    "convnext",
    "deberta",
    "deberta-v2",
    "distilbert",
    "donut-swin",
    "electra",
    "gpt2",
    "gpt_neo",
    "gptj",
    "hubert",
    "layoutlm",
    "lxmert",
    "m2m_100",
    "marian",
    "mbart",
    "megatron-bert",
    "mobilebert",
    "mt5",
    "nezha",
    "opt",
    "pegasus",
    "plbart",
    "resnet",
    "roberta",
    "segformer",
    "speech_to_text",
    "speech_to_text_2",
    "swin",
    "t5",
    "trocr",
    "vit",
    "xglm",
    "wav2vec2",
    #    "xlnet",
]

_REGULAR_SUPPORTED_MODELS = []
for item in _REGULAR_SUPPORTED_MODEL_NAMES_AND_TASKS:
    if isinstance(item, dict):
        _REGULAR_SUPPORTED_MODELS.extend(_generate_supported_model_class_names(**item))
    else:
        _REGULAR_SUPPORTED_MODELS.extend(_generate_supported_model_class_names(item))

_SPECIAL_SUPPORTED_MODELS = [
    "CLIPTextModel",
    "CLIPTextModelWithProjection",
    "CLIPVisionModel",
    "CLIPVisionModelWithProjection",
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "GitVisionModel",
    "GPT2DoubleHeadsModel",
    "Speech2Text2Decoder",
    "TrOCRDecoder",
    "PeftModelForCausalLM",
    "PeftModelForSeq2SeqLM"
    # TODO: add support for them as it should be quite easy to do so (small blocking issues).
    # XLNetForQuestionAnswering,
]
_SUPPORTED_MODELS = tuple(sorted(set(_REGULAR_SUPPORTED_MODELS + _SPECIAL_SUPPORTED_MODELS)))


def torch_nn_embedding(self, input):
    return torch.empty(*input.shape, self.weight.shape[-1], device="meta", dtype=self.weight.dtype)


def torch_nn_functional_embedding(
    input, weight, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False
):
    return torch.empty(*input.shape, weight.shape[-1], device="meta", dtype=weight.dtype)


def torch_nn_layernorm(self, input):
    return input


def torch_nn_groupnorm(self, input):
    return input


def torch_nn_linear(self, input):
    return torch.empty(input.shape[:-1] + (self.out_features,), device="meta")


def torch_relu(x):
    return x


def torch_nn_relu(self, x):
    return x


def torch_nn_functional_relu(x, inplace=False):
    if not inplace:
        raise ValueError("Don't support in-place functional.relu for MetaTensor analysis")
    return x


def torch_where(condition, x, y):
    # torch.where returns the broadcasted tensor of condition, x, and y,
    # so hack it by using addition
    return condition.to(device="meta") + x.to(device="meta") + y.to(device="meta")


def torch_abs(input, *, out=None):
    if out is not None:
        raise ValueError("Don't support in-place abs for MetaTensor analysis")
    return input


def torch_arange(*args, **kwargs):
    n = len(args)
    step = 1
    if n == 1:
        start = 0
        end = args[0]
    elif n == 2:
        start, end = args
    else:
        start, end, step = args
    if isinstance(start, float):
        start = int(start)
    if isinstance(end, float):
        start = int(end)
    if isinstance(step, float):
        step = int(step)
    step = kwargs.get("step", step)
    dtype = kwargs.get("dtype")
    return torch.empty((end - start) // step, dtype=dtype, device="meta")


def torch_full(*args, **kwargs):
    args = list(args)
    if isinstance(args[1], torch.Tensor) and args[1].device == torch.device("meta"):
        args[1] = 1  # Any value.
    kwargs_without_device = dict(kwargs)
    kwargs_without_device.pop("device", None)
    return torch.full(*args, **kwargs_without_device)


def torch_cat(tensors, dim=None, axis=None, *, out=None):
    if dim is None and axis is None:
        dim = 0
    if dim is None and axis is not None:
        dim = axis
    if dim < 0:
        dim = tensors[0].dim() + dim
    shapes = [t.shape for t in tensors]
    shape = list(shapes[0])
    concatenated_dim = sum(shape[dim] for shape in shapes)
    final_shape = shape[:dim] + [concatenated_dim] + shape[dim + 1 :]
    return torch.empty(final_shape, device="meta")


def torch_stack(tensors, dim=None, axis=None, *, out=None):
    if dim is None and axis is None:
        dim = 0
    if dim is None and axis is not None:
        dim = axis
    if dim < 0:
        dim = tensors[0].dim() + 1 + dim
    shape = list(tensors[0].shape)
    shape.insert(dim, len(tensors))
    return torch.empty(shape, device="meta")


def torch_add(input, other, *, alpha=1, out=None):
    if not isinstance(input, torch.Tensor):
        return torch.empty_like(other, device="meta")
    if not isinstance(other, torch.Tensor):
        return torch.empty_like(input, device="meta")
    max_length = max(input.dim(), other.dim())
    input_shape = list(input.shape) + [1] * (max_length - input.dim())
    other_shape = list(other.shape) + [1] * (max_length - other.dim())
    shape = []
    for i in range(max_length):
        shape.append(max(input_shape[i], other_shape[i]))
    return torch.empty(shape, device="meta")


def torch_mul(input, other, *, out=None):
    return torch_add(input, other, out=out)


def torch_tensor_mul(self, other):
    return torch_mul(self, other)


def torch_matmul(input, other, *, out=None):
    d1 = input.dim()
    d2 = other.dim()
    shape = None
    if d1 == 1 and d2 == 1:
        shape = None
    elif d1 == 2 and d2 == 2:
        shape = (input.size(0), other.size(1))
    elif d1 == 1 and d2 == 2:
        shape = (other.size(1),)
    elif d1 == 2 and d1 == 1:
        shape = (input.size(0),)
    else:
        max_length = max(input.dim(), other.dim())
        shape1 = list(input.shape)
        shape2 = list(other.shape)
        if d1 == 1:
            shape1 = [1] + shape1
        if d2 == 1:
            shape2.append(1)
        shape1 = [-1] * (max_length - d1) + list(input.shape)
        shape2 = [-1] * (max_length - d2) + list(other.shape)
        shape = []
        for i in range(max_length):
            shape.append(max(shape1[i], shape2[i]))
        shape[-2] = shape1[-2]
        shape[-1] = shape2[-1]
        if d1 == 1:
            shape.pop(-2)
        if d2 == 1:
            shape.pop(-1)
    if shape is None:
        return torch.tensor(0.0, device="meta")
    return torch.empty(*shape, device="meta")


def torch_bmm(input, mat2, *, out=None):
    if out is not None:
        raise ValueError("Don't support in-place bmm for MetaTensor analysis")
    batch_size, n, m = input.shape
    _, _, p = mat2.shape
    return torch.empty(batch_size, n, p, device="meta")


def torch_baddbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None):
    if out is not None:
        raise ValueError("Don't support in-place baddbmm for MetaTensor analysis")
    return torch_bmm(batch1, batch2)


def torch_tensor_baddbmm(self, batch1, batch2, *, beta=1, alpha=1, out=None):
    return torch_baddbmm(self, batch1, batch2, beta=beta, alpha=alpha, out=out)


def torch_einsum(equation, *operands):
    # TODO: infer shape without performing the computation, this might be quite hard.
    concrete_operands = (torch.empty_like(operand, device="cpu") for operand in operands)
    return torch.einsum(equation, *concrete_operands).to("meta")


def torch_tensor_repeat(self, *sizes):
    shape = list(self.shape)
    for i, x in enumerate(sizes):
        shape[i] *= x
    return torch.empty(shape, device="meta")


def torch_repeat_interleave(*args, dim=None, output_size=None):
    num_args = len(args)
    if num_args == 1:
        shape = [output_size if output_size is not None else args[0].sum()]
    else:
        shape = list(args[0].shape)
        if dim is None:
            if num_args > 2:
                dim = args[2]
            else:
                shape = [sum(shape)]
                dim = 0
        repeats = args[1]
        if isinstance(repeats, int) or torch.numel(repeats) == 1:
            shape[dim] *= int(repeats)
        else:
            shape[dim] = output_size if output_size is not None else repeats.sum()
    return torch.empty(*shape, device="meta")


def torch_index_select(input, dim, index, *, out=None):
    shape = list(input.shape)
    shape[dim] = len(index)
    return torch.empty(*shape, device="meta")


def torch_tensor_index_select(self, dim, index):
    return torch_index_select(self, dim, index)


def torch_gather(input, dim, index, *, sparse_grad=False, out=None):
    shape = list(input.shape)
    shape[dim] = index.shape[dim]
    return torch.empty(*shape, device="meta")


def torch_tensor_gather(self, dim, index):
    return torch_gather(self, dim, index)


def torch_roll(input, shifts, dims=None):
    return input


def torch_flip(input, dims):
    return input


def torch_tensor_flip(self, dims):
    return self


def torch_nn_conv1d(self, input):
    l_in = input.shape[-1]
    shape = None
    padding = self.padding
    if padding == "valid":
        padding = (0, 0)
    if padding == "same":
        shape = list(input.shape)
    if shape is None:
        shape = list(input.shape)
        l_out = math.floor(
            (l_in + 2 * padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1
        )
        shape[-1] = l_out
    shape[-2] = self.out_channels
    return torch.empty(shape, device="meta")


def torch_nn_conv2d(self, input):
    h_in, w_in = input.shape[-2:]
    shape = None
    padding = self.padding
    if padding == "valid":
        padding = (0, 0)
    if padding == "same":
        shape = list(input.shape)
    if shape is None:
        shape = list(input.shape)
        h_out = math.floor(
            (h_in + 2 * padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1
        )
        w_out = math.floor(
            (w_in + 2 * padding[1] - self.dilation[1] * (self.kernel_size[1] - 1) - 1) / self.stride[1] + 1
        )
        shape[-2:] = [h_out, w_out]
    shape[-3] = self.out_channels
    return torch.empty(shape, device="meta")


def torch_squeeze(input, dim=None):
    shape = list(input.shape)
    if dim is not None:
        if dim < 0:
            dim = input.dim() + dim
        if shape[dim] == 1:
            shape.pop(dim)
    else:
        new_shape = []
        for dim_value in shape:
            if dim_value == 1:
                continue
            new_shape.append(dim_value)
        shape = new_shape
    return torch.empty(shape, device="meta")


def torch_tensor_squeeze(self, dim=None):
    return torch_squeeze(self, dim)


def torch_unsqueeze(input, dim):
    shape = list(input.shape)
    if dim < 0:
        dim = input.dim() + 1 + dim
    shape.insert(dim, 1)
    return torch.empty(shape, device="meta")


def torch_tensor_unsqueeze(self, dim):
    return torch_unsqueeze(self, dim)


def torch_unique_consecutive(input, **kwargs):
    output = torch.unique_consecutive(torch.zeros_like(input, device="cpu"), **kwargs)
    if isinstance(output, torch.Tensor):
        return output.to("meta")
    else:
        return tuple(map(output, lambda x: x.to("meta")))


def torch_nn_functional_one_hot(tensor, num_classes=-1):
    if num_classes < 0:
        raise ValueError("Don't support automatic num_classes inference for MetaTensor analysis")
    shape = list(tensor.shape) + [num_classes]
    return torch.empty(shape, device="meta")


def torch_nn_mseloss(self, input, target):
    if self.reduction == "none":
        shape = target.shape
    else:
        shape = (1,)
    return torch.empty(shape, device="meta")


def torch_nn_crossentropyloss(self, input, target):
    if self.reduction == "none":
        shape = target.shape
    else:
        shape = (1,)
    return torch.empty(shape, device="meta")


def torch_nn_bcewithlogitsloss(self, input, target):
    if self.reduction == "none":
        shape = target.shape
    else:
        shape = (1,)
    return torch.empty(shape, device="meta")


def operator_getitem(a, b):
    def to_concrete(t):
        if isinstance(t, torch.Tensor):
            concrete = torch.ones_like(t, device="cpu")
            if concrete.dtype in [torch.float16, torch.float32, torch.float64, torch.int32]:
                concrete = concrete.to(torch.int64)
            return concrete
        return t

    if isinstance(a, torch.Tensor):
        # TODO: infer shape without performing the computation.
        if isinstance(b, tuple):
            b = tuple(map(to_concrete, b))
        else:
            b = to_concrete(b)
        return operator.getitem(torch.empty_like(a, device="cpu"), b).to("meta")
    return operator.getitem(a, b)


_MANUAL_META_OVERRIDES: Dict[Callable, Callable] = {
    torch.nn.Embedding: torch_nn_embedding,
    torch.nn.functional.embedding: torch_nn_functional_embedding,
    torch.nn.LayerNorm: torch_nn_layernorm,
    torch.nn.GroupNorm: torch_nn_groupnorm,
    torch.nn.Linear: torch_nn_linear,
    torch.relu: torch_relu,
    torch.nn.functional.relu: torch_nn_functional_relu,
    torch.nn.ReLU: torch_nn_relu,
    torch.where: torch_where,
    torch.abs: torch_abs,
    torch.arange: torch_arange,
    torch.full: torch_full,
    torch.cat: torch_cat,
    torch.stack: torch_stack,
    torch.add: torch_add,
    torch.mul: torch_mul,
    torch.Tensor.mul: torch_tensor_mul,
    torch.matmul: torch_matmul,
    torch.bmm: torch_bmm,
    torch.baddbmm: torch_baddbmm,
    torch.Tensor.baddbmm: torch_tensor_baddbmm,
    torch.einsum: torch_einsum,
    torch.Tensor.repeat: torch_tensor_repeat,
    torch.repeat_interleave: torch_repeat_interleave,
    torch.roll: torch_roll,
    torch.flip: torch_flip,
    torch.Tensor.flip: torch_tensor_flip,
    torch.index_select: torch_index_select,
    torch.Tensor.index_select: torch_tensor_index_select,
    torch.gather: torch_gather,
    torch.Tensor.gather: torch_tensor_gather,
    torch.nn.Conv1d: torch_nn_conv1d,
    torch.nn.Conv2d: torch_nn_conv2d,
    torch.squeeze: torch_squeeze,
    torch.Tensor.squeeze: torch_tensor_squeeze,
    torch.unsqueeze: torch_unsqueeze,
    torch.Tensor.unsqueeze: torch_tensor_unsqueeze,
    torch.unique_consecutive: torch_unique_consecutive,
    torch.nn.functional.one_hot: torch_nn_functional_one_hot,
    torch.nn.MSELoss: torch_nn_mseloss,
    torch.nn.CrossEntropyLoss: torch_nn_crossentropyloss,
    torch.nn.BCEWithLogitsLoss: torch_nn_bcewithlogitsloss,
    operator.getitem: operator_getitem,
}


class HFProxy(Proxy):
    """
    Proxy that uses metadata to handle data-dependent control-flow.
    """

    def install_metadata(self, metadata):
        self._metadata = metadata

    @property
    def shape(self):
        return self.tracer.create_proxy("call_method", "size", (self,), {})

    @property
    def device(self):
        # Hack so we can track when devices are used. During meta-tensor propagation,
        # replace these values with a constant 'meta'
        return MetaDeviceAttribute(self, "device")

    def __len__(self):
        if hasattr(self, "_metadata") and self._metadata is not None:
            return len(self._metadata)
        return super().__len__()

    def __bool__(self):
        if hasattr(self, "_metadata") and self._metadata is not None:
            return self._metadata
        return super().__bool__()

    def __getattr__(self, k):
        if k == "_metadata":
            return self.__getattribute__(k)
        # note: not added to the graph yet, if this is a method call
        # we peephole optimize to the method invocation
        return HFAttribute(self, k)

    def __setitem__(self, indices, values):
        return self.tracer.create_proxy("call_function", operator.setitem, (self, indices, values), {})

    def __contains__(self, key):
        if hasattr(self, "_metadata") and self._metadata is not None:
            return key in self._metadata
        return super().__contains__(key)


class HFAttribute(HFProxy):
    def __init__(self, root, attr: str):
        self.root = root
        self.attr = attr
        self.tracer = root.tracer
        self._node = None

        if hasattr(self.root, "_metadata"):
            self.install_metadata(getattr(self.root._metadata, attr))

    @property
    def node(self):
        # the node for attributes is added lazily, since most will just be method calls
        # which do not rely on the getitem call
        if self._node is None:
            self._node = self.tracer.create_proxy("call_function", builtins.getattr, (self.root, self.attr), {}).node
        return self._node

    def __call__(self, *args, **kwargs):
        return self.tracer.create_proxy("call_method", self.attr, (self.root,) + args, kwargs)


class MetaDeviceAttribute(HFAttribute):
    pass


def _proxies_to_metas(v):
    """Returns the underlying metadata for HFProxies, and behaves like the identity for the others."""
    if isinstance(v, MetaDeviceAttribute):
        return "meta"
    if isinstance(v, torch.fx.Proxy):
        if not (isinstance(v, HFProxy) and hasattr(v, "_metadata")):
            raise RuntimeError(f"No metadata was found for {v}")
        return v._metadata
    return v


def _gen_constructor_wrapper(target):
    @functools.wraps(target)
    def wrapper(*args, **kwargs):
        proxy = None

        def check_has_proxy(v):
            if isinstance(v, Proxy):
                nonlocal proxy
                proxy = v

        torch.fx.node.map_aggregate(args, check_has_proxy)
        torch.fx.node.map_aggregate(kwargs, check_has_proxy)

        if proxy is not None:
            return proxy.tracer.create_proxy("call_function", target, args, kwargs)
        else:
            return target(*args, **kwargs)

    return wrapper, target


def _generate_random_int(low: int = 10, high: int = 20, forbidden_values: Optional[List[int]] = None):
    if forbidden_values is None:
        forbidden_values = []
    value = random.randint(low, high)
    while value in forbidden_values:
        value = random.randint(low, high)
    return value


class HFTracer(Tracer):
    """
    Tracer that is able to symbolically trace models from the library. To do that, it uses the HFProxy instead of the
    regular PyTorch torch.fx.Proxy.
    """

    # Feature flag for proxying accesses to buffer values
    proxy_buffer_attributes: bool = True
    allow_insert_stateless_mods: bool = True
    _TORCH_METHODS_TO_PATCH = [
        "arange",
        "zeros",
        "ones",
        "full",
        "full_like",
        "eye",
        "empty",
        "tensor",
        "clamp",
        "finfo",
    ]
    supported_archs = (PreTrainedModel,) if not is_peft_available() else (PreTrainedModel, PeftModel)

    def __init__(self, autowrap_modules=(math,), autowrap_functions=()):
        super().__init__(autowrap_modules=autowrap_modules, autowrap_functions=autowrap_functions)

        if not is_torch_fx_available():
            raise ImportError(
                f"Found an incompatible version of torch. Found version {get_torch_version()}, but only version "
                f"{TORCH_FX_REQUIRED_VERSION} is supported."
            )

    def _generate_dummy_input(
        self, model: PreTrainedModel, input_name: str, shape: List[int]
    ) -> Dict[str, torch.Tensor]:
        """Generates dummy input for model inference recording."""
        # Retrieving the model class, either from the "class_for_deserialization" attribute if the model was restored
        # from pickle, or from the "__class__" attribute in the general case.
        model_class_name = getattr(model, "class_for_deserialization", model.__class__).__name__
        device = model.device
        inputs_dict = {}

        if input_name in ["labels", "start_positions", "end_positions"]:
            batch_size = shape[0]
            if model_class_name in [
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
                *get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
                *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
            ]:
                inputs_dict["labels"] = torch.zeros(batch_size, dtype=torch.long, device=device)
            elif model_class_name in [
                *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
                "XLNetForQuestionAnswering",
            ]:
                inputs_dict["start_positions"] = torch.zeros(batch_size, dtype=torch.long, device=device)
                inputs_dict["end_positions"] = torch.zeros(batch_size, dtype=torch.long, device=device)
            elif model_class_name in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
                if not hasattr(model.config, "problem_type") or model.config.problem_type is None:
                    raise ValueError(
                        "Could not retrieve the problem type for the sequence classification task, please set "
                        'model.config.problem_type to one of the following values: "regression", '
                        '"single_label_classification", or "multi_label_classification".'
                    )

                if model.config.problem_type == "regression":
                    labels_shape = (batch_size, model.config.num_labels)
                    labels_dtype = torch.float32
                elif model.config.problem_type == "single_label_classification":
                    labels_shape = (batch_size,)
                    labels_dtype = torch.long
                elif model.config.problem_type == "multi_label_classification":
                    labels_shape = (batch_size, model.config.num_labels)
                    labels_dtype = torch.float32
                else:
                    raise ValueError(
                        'Expected model.config.problem_type to be either: "regression", "single_label_classification"'
                        f', or "multi_label_classification", but "{model.config.problem_type}" was provided.'
                    )
                inputs_dict["labels"] = torch.zeros(*labels_shape, dtype=labels_dtype, device=device)

            elif model_class_name in [
                *get_values(MODEL_FOR_PRETRAINING_MAPPING_NAMES),
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES),
                "GPT2DoubleHeadsModel",
                "PeftModelForCausalLM",
                "PeftModelForSeq2SeqLM",
            ]:
                inputs_dict["labels"] = torch.zeros(shape, dtype=torch.long, device=device)
            elif model_class_name in [*get_values(MODEL_FOR_CTC_MAPPING_NAMES)]:
                inputs_dict["labels"] = torch.zeros(shape, dtype=torch.float32, device=device)
            else:
                raise NotImplementedError(
                    f"Generating the dummy input named {input_name} for {model_class_name} is not supported yet."
                )
        elif "pixel_values" in input_name:
            batch_size = shape[0]
            image_size = getattr(model.config, "image_size", None)
            if image_size is None:
                if hasattr(model.config, "vision_config"):
                    image_size = model.config.vision_config.image_size
                elif hasattr(model.config, "encoder"):
                    image_size = model.config.encoder.image_size
                else:
                    image_size = (_generate_random_int(), _generate_random_int())

            # If no num_channels is in the config, use some arbitrary value.
            num_channels = getattr(model.config, "num_channels", 3)
            if not isinstance(image_size, collections.abc.Iterable):
                image_size = (image_size, image_size)
            height, width = image_size
            inputs_dict[input_name] = torch.zeros(
                batch_size, num_channels, height, width, dtype=torch.float32, device=device
            )
        elif "bbox" in input_name:
            inputs_dict[input_name] = torch.zeros(*shape, 4, dtype=torch.float, device=device)
        elif "input_features" in input_name:
            inputs_dict[input_name] = torch.zeros(
                *shape, model.config.input_feat_per_channel, dtype=torch.float, device=device
            )
        elif "visual_feats" in input_name:
            inputs_dict[input_name] = torch.zeros(
                shape
                + [
                    model.config.visual_feat_dim,
                ],
                dtype=torch.float,
                device=device,
            )
        elif "visual_pos" in input_name:
            inputs_dict[input_name] = torch.zeros(
                shape
                + [
                    model.config.visual_pos_dim,
                ],
                dtype=torch.float,
                device=device,
            )
        elif "inputs" in input_name:
            inputs_dict[input_name] = torch.zeros(*shape, dtype=torch.float, device=device)
        elif "input_values" in input_name:
            batch_size, _ = shape
            # Generating big sequence length for audio inputs.
            seq_length = _generate_random_int(low=10000, high=20000)
            inputs_dict[input_name] = torch.zeros(batch_size, seq_length, dtype=torch.float, device=device)
        elif "mask" in input_name or "ids" in input_name:
            inputs_dict[input_name] = torch.zeros(shape, dtype=torch.long, device=device)
        else:
            shape_with_hidden_size = shape + [model.config.hidden_size]
            inputs_dict[input_name] = torch.zeros(shape_with_hidden_size, dtype=torch.float, device=device)

        return inputs_dict

    def create_proxy(self, kind, target, args, kwargs, name=None, type_expr=None, proxy_factory_fn=None):
        rv = super().create_proxy(kind, target, args, kwargs, name, type_expr, proxy_factory_fn)

        if kind == "placeholder" and target in self.meta_args:
            rv.install_metadata(self.meta_args[target])
            return rv

        if target in self.orig_fns:
            # NOTE: tensor constructors in PyTorch define the `device` argument as
            # *kwargs-only*. That is why this works. If you add methods to
            # _TORCH_METHODS_TO_PATCH that do not define `device` as kwarg-only,
            # this will break and you will likely see issues where we cannot infer
            # the size of the output.
            if "device" in kwargs:
                kwargs["device"] = "meta"

        try:
            args_metas = torch.fx.node.map_aggregate(args, _proxies_to_metas)
            kwargs_metas = torch.fx.node.map_aggregate(kwargs, _proxies_to_metas)

            if kind == "call_function":
                meta_target = _MANUAL_META_OVERRIDES.get(target, target)
                meta_out = meta_target(*args_metas, **kwargs_metas)
                if isinstance(meta_out, torch.Tensor):
                    meta_out = meta_out.to(device="meta")
            elif kind == "call_method":
                method = getattr(args_metas[0].__class__, target)
                meta_target = _MANUAL_META_OVERRIDES.get(method, method)
                meta_out = meta_target(*args_metas, **kwargs_metas)
            elif kind == "call_module":
                if not hasattr(self, "orig_forward"):
                    raise AttributeError(f"{self} does not have an attribute called orig_forward")
                self._disable_module_getattr = True
                try:
                    mod = self.root.get_submodule(target)
                    mod_type = type(mod)
                    if mod_type in _MANUAL_META_OVERRIDES:
                        meta_out = _MANUAL_META_OVERRIDES[mod_type](mod, *args_metas, **kwargs_metas)
                    else:
                        meta_out = self.orig_forward(*args_metas, **kwargs_metas)
                finally:
                    self._disable_module_getattr = False
            elif kind == "get_attr":
                self._disable_module_getattr = True
                try:
                    attr_itr = self.root
                    atoms = target.split(".")
                    for atom in atoms:
                        attr_itr = getattr(attr_itr, atom)
                    if isinstance(attr_itr, torch.Tensor):
                        meta_out = attr_itr.to(device="meta")
                    else:
                        meta_out = attr_itr
                finally:
                    self._disable_module_getattr = False
            else:
                return rv

            if not isinstance(rv, Proxy):
                raise ValueError("Don't support composite output yet")
            rv.install_metadata(meta_out)
        except Exception as e:
            if _IS_IN_DEBUG_MODE:
                warnings.warn(f"Could not compute metadata for {kind} target {target}: {e}")

        return rv

    # Replaced by .getattr from PyTorch 1.13
    def _module_getattr(self, attr, attr_val, parameter_proxy_cache):
        if getattr(self, "_disable_module_getattr", False):
            return attr_val
        else:

            def maybe_get_proxy_for_attr(attr_val, collection_to_search, parameter_proxy_cache):
                for n, p in collection_to_search:
                    if attr_val is p:
                        if n not in parameter_proxy_cache:
                            kwargs = {}
                            if "proxy_factory_fn" in inspect.signature(self.create_proxy).parameters:
                                kwargs["proxy_factory_fn"] = (
                                    None
                                    if not self.param_shapes_constant
                                    else lambda node: ParameterProxy(self, node, n, attr_val)
                                )
                            val_proxy = self.create_proxy("get_attr", n, (), {}, **kwargs)  # type: ignore[arg-type]
                            parameter_proxy_cache[n] = val_proxy
                        return parameter_proxy_cache[n]
                return None

            if isinstance(attr_val, torch.nn.Parameter):
                maybe_parameter_proxy = maybe_get_proxy_for_attr(
                    attr_val, self.root.named_parameters(), parameter_proxy_cache
                )
                if maybe_parameter_proxy is not None:
                    return maybe_parameter_proxy

            if self.proxy_buffer_attributes and isinstance(attr_val, torch.Tensor):
                maybe_buffer_proxy = maybe_get_proxy_for_attr(
                    attr_val, self.root.named_buffers(), parameter_proxy_cache
                )
                if maybe_buffer_proxy is not None:
                    return maybe_buffer_proxy

            return attr_val

    # Needed for PyTorch 1.13+
    def getattr(self, attr: str, attr_val: Any, parameter_proxy_cache: Dict[str, Any]):
        return self._module_getattr(attr, attr_val, parameter_proxy_cache)

    def call_module(self, m, forward, args, kwargs):
        self.orig_forward = forward
        return super().call_module(m, forward, args, kwargs)

    def proxy(self, node):
        return HFProxy(node, self)

    def trace(
        self,
        root: Union[torch.nn.Module, Callable[..., Any]],
        concrete_args: Optional[Dict[str, Any]] = None,
        dummy_inputs: Optional[Dict[str, Any]] = None,
        complete_concrete_args_with_inputs_not_in_dummy_inputs: bool = True,
    ) -> Graph:
        """
        Traces `root` and returns the corresponding FX `torch.fx.Graph` representation. `root` can either be a
        `torch.nn.Module` instance or a Python callable. Note that after this call, `self.root` may be different from
        the `root` passed in here. For example, when a free function is passed to `trace()`, we will create a
        `torch.nn.Module` instance to use as the root and add embedded constants to.

        Args:
            root (`torch.nn.Module` or  `Callable`):
                Either a `torch.nn.Module`` or a function to be traced through. If root is not a
                [`~transformers.PreTrainedModel`], then `dummy_inputs` must be passed, otherwise tracing will fail.
            concrete_args (`Dict[str, Any], *optional*):
                Concrete arguments that should not be treated as Proxies
            dummy_inputs (`Dict[str, Any]`, *optional*):
                The dummy inputs needed to handle data-dependent control-flow if `root` is not a
                [`~transformers.PreTrainedModel`]. It can also be used when `root` is a
                [`~transformers.PreTrainedModel`] to specify custom dummy inputs for a subset or all the model inputs.
            complete_concrete_args_with_inputs_not_in_dummy_inputs (`bool`, *optional*, defaults to `True`):
                If `True`, and `dummy_inputs` is specified, every argument that `root` can take that is not in
                `dummy_inputs` and not in `concrete_args` will be added to `concrete_args`, otherwise does nothing.

        Returns:
            `torch.fx.Graph`:
                A FX `torch.fx.Graph` representing the semantics of the passed-in `root`.

        """
        sig = inspect.signature(root.forward if isinstance(root, torch.nn.Module) else root)

        if concrete_args is None:
            concrete_args = {}

        if dummy_inputs is not None and complete_concrete_args_with_inputs_not_in_dummy_inputs:
            for param in sig.parameters.values():
                if param.name in dummy_inputs:
                    continue
                if param.default is inspect.Parameter.empty:
                    raise ValueError(f"You need to specify a default value for the parameter {param.name}.")
            concrete_args.update(
                {
                    p.name: p.default
                    for p in sig.parameters.values()
                    if (p.name not in dummy_inputs and p.name not in concrete_args)
                }
            )

        input_names = sig.parameters.keys() - concrete_args.keys()

        # Creating a random input shape to generate dummy inputs.
        batch_size = _generate_random_int()
        sequence_length = _generate_random_int()
        shape = [batch_size, sequence_length]

        if root.__class__.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
            num_choices = _generate_random_int(low=2, high=5)
            shape.insert(1, num_choices)

        inputs = dict(dummy_inputs) if dummy_inputs is not None else {}
        for input_name in input_names:
            if input_name in inputs:
                continue
            # We enforce that root must either be a PreTrainedModel or deserialized from a serialized traced model to
            # be able to use HFTracer._generate_dummy_input.
            if isinstance(root, self.supported_archs) or type(root).__qualname__.startswith(
                ("_deserialize_graph_module", "_CodeOnlyModule")
            ):
                inputs.update(self._generate_dummy_input(root, input_name, shape))
            else:
                raise RuntimeError(
                    f"Could not generate input named {input_name} for because root is not a"
                    " transformers.PreTrainedModel."
                )

        concrete_metas = {
            input_name: input_.to("meta") if isinstance(input_, torch.Tensor) else input_
            for input_name, input_ in inputs.items()
        }
        for param in sig.parameters.values():
            if param.kind == inspect.Parameter.VAR_KEYWORD and param.name not in input_names:
                concrete_metas[f"**{param.name}"] = {}
        self.meta_args = concrete_metas
        self.patched_torch_methods = {
            target: _gen_constructor_wrapper(getattr(torch, target)) for target in self._TORCH_METHODS_TO_PATCH
        }
        self.orig_fns = set()

        for name, (wrapper, orig) in self.patched_torch_methods.items():
            setattr(torch, name, wrapper)
            self.orig_fns.add(orig)

        try:
            self.graph = super().trace(root, concrete_args=concrete_args)
        finally:
            for name, (_, orig) in self.patched_torch_methods.items():
                setattr(torch, name, orig)

        # This is necessary because concrete args are added as input to the traced module since
        # https://github.com/pytorch/pytorch/pull/55888.
        for node in self.graph.nodes:
            if node.op == "placeholder":
                # Removing default values for inputs as the forward pass will fail with them.
                if node.target in input_names:
                    node.args = ()
                    # Without this, torch.jit.script fails because the inputs type is Optional[torch.Tensor].
                    # It cannot infer on the attributes and methods the input should have, and fails.
                    node.type = torch.Tensor
                # It is a concrete arg so it is not used and should be removed.
                else:
                    to_visit = [node]
                    to_delete = collections.OrderedDict()
                    while to_visit:
                        n = to_visit.pop(0)
                        to_delete[n] = None
                        to_visit += list(n.users.keys())

                    for user in reversed(to_delete.keys()):
                        self.graph.erase_node(user)

            # TODO: solves GraphModule creation.
            # Without this, return type annotation "Tuple" is causing code execution failure.
            if node.op == "output":
                node.type = None

        return self.graph

    def _stateless_mod_instanciation_depends_on_proxies(self, mod: nn.Module) -> bool:
        """
        Whether the module was instantiated with Proxies. If that is the case, such module cannot be a leaf module
        because its attributes are input-dependent.
        """
        return any(isinstance(attr, Proxy) for attr in mod.__dict__.values())

    def _insert_module_as_submodule(self, mod: nn.Module) -> str:
        """
        Helper method which tries to insert a module that was not declared as submodule.
        """
        # If one of the module attributes is a Proxy, it means that its instantiation is input-dependent.
        # It is not possible to insert such modules, those should be traced through.
        if self._stateless_mod_instanciation_depends_on_proxies(mod):
            return ""
        idx = 0
        mod_name = mod.__class__.__name__.lower()
        path = f"{mod_name}_{idx}"
        already_inserted = False
        while hasattr(self.root, path):
            if getattr(self.root, path) is mod:
                already_inserted = True
                break
            path = f"{mod_name}_{idx}"
            idx += 1

        # No need to add multiple instances of the same module.
        if not already_inserted:
            self.root.add_module(path, mod)
        return path

    def path_of_module(self, mod: nn.Module) -> str:
        """
        Helper method to find the qualified name of `mod` in the Module hierarchy of `root`. For example, if `root` has
        a submodule named `foo`, which has a submodule named `bar`, passing `bar` into this function will return the
        string "foo.bar".

        Args:
            mod (str): The `Module` to retrieve the qualified name for.
        """
        try:
            return super().path_of_module(mod)
        except NameError as e:
            if self.allow_insert_stateless_mods and len(list(mod.parameters())) == 0 and len(list(mod.buffers())) == 0:
                path = self._insert_module_as_submodule(mod)
                return path
            raise e

    def is_leaf_module(self, m: torch.nn.Module, module_qualified_name: str) -> bool:
        return (not self._stateless_mod_instanciation_depends_on_proxies(m)) and super().is_leaf_module(
            m, module_qualified_name
        )

    @compatibility(is_backward_compatible=True)
    def keys(self, obj: "Proxy") -> Any:
        """Called when a proxy object is has the keys() method called.
        This is what happens when ** is called on a proxy. This should return an iterator if ** is supposed to work in
        your custom tracer.
        """
        attribute = HFAttribute(obj, "keys")()
        if obj.node.target == "**kwargs":
            return attribute._metadata
        return attribute


def get_concrete_args(model: nn.Module, input_names: List[str]):
    sig = inspect.signature(model.forward)

    if not (set(input_names) <= set(sig.parameters.keys())):
        formatted_input_names = input_names[0] if len(input_names) == 1 else ", ".join(input_names)
        formatted_allowed_input_names = ", ".join(sig.parameters.keys())
        raise ValueError(
            f"The model does not have input(s) named: {formatted_input_names}, expected a subset of the following:"
            f" {formatted_allowed_input_names}"
        )

    return {p.name: p.default for p in sig.parameters.values() if p.name not in input_names}


def check_if_model_is_supported(model: PreTrainedModel):
    if model.__class__.__name__ not in _SUPPORTED_MODELS:
        supported_model_names = ", ".join(_SUPPORTED_MODELS)
        raise NotImplementedError(
            f"Model {model.__class__.__name__} is not supported yet, supported models: {supported_model_names}"
        )


def symbolic_trace(
    model: PreTrainedModel,
    input_names: Optional[List[str]] = None,
    disable_check: bool = False,
    tracer_cls: Type[HFTracer] = HFTracer,
) -> GraphModule:
    """
    Performs symbolic tracing on the model.

    Args:
        model ([`PretrainedModel`]):
            The model to trace.
        input_names (`List[str]`, *optional*):
            The names of the inputs of the traced model. If unset, model.dummy_inputs.keys() are used instead.
        disable_check (`bool`, *optional*, defaults to `False`):
            If `True`, no check is done before trying to trace the model, this is mostly usesul for debugging purposes.
        tracer_cls (`Type[HFTracer]`, *optional*, defaults to `HFTracer`):
            The tracer class to use for instantiating the tracer. If unset, `HFTracer` is used instead.

    Returns:
        `torch.fx.GraphModule`: A GraphModule constructed by recording operations seen while tracing the model.

    Example:

        ```python
        from transformers.utils.fx import symbolic_trace

        traced_model = symbolic_trace(model, input_names=["input_ids", "attention_mask", "token_type_ids"])
        ```
    """
    if input_names is None:
        input_names = model.dummy_inputs.keys()

    input_names = list(input_names)
    concrete_args = get_concrete_args(model, input_names)

    if not disable_check:
        check_if_model_is_supported(model)

    # Tracing.
    tracer = tracer_cls()
    traced_graph = tracer.trace(model, concrete_args=concrete_args)
    traced = torch.fx.GraphModule(model, traced_graph)

    traced.config = model.config
    # The model class must be stored as an attribute to allow model deserialization, which uses trace, and thus
    # _generate_dummy_input, where the model class is needed.
    traced.class_for_deserialization = model.__class__
    traced.device = model.device

    return traced