Spaces:
Runtime error
Runtime error
File size: 12,315 Bytes
f8f5cdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import inspect
from typing import List, Union
import numpy as np
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, logging
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline
logger = logging.get_logger(__name__)
class ZeroShotClassificationArgumentHandler(ArgumentHandler):
"""
Handles arguments for zero-shot for text classification by turning each possible label into an NLI
premise/hypothesis pair.
"""
def _parse_labels(self, labels):
if isinstance(labels, str):
labels = [label.strip() for label in labels.split(",") if label.strip()]
return labels
def __call__(self, sequences, labels, hypothesis_template):
if len(labels) == 0 or len(sequences) == 0:
raise ValueError("You must include at least one label and at least one sequence.")
if hypothesis_template.format(labels[0]) == hypothesis_template:
raise ValueError(
(
'The provided hypothesis_template "{}" was not able to be formatted with the target labels. '
"Make sure the passed template includes formatting syntax such as {{}} where the label should go."
).format(hypothesis_template)
)
if isinstance(sequences, str):
sequences = [sequences]
sequence_pairs = []
for sequence in sequences:
sequence_pairs.extend([[sequence, hypothesis_template.format(label)] for label in labels])
return sequence_pairs, sequences
@add_end_docstrings(PIPELINE_INIT_ARGS)
class ZeroShotClassificationPipeline(ChunkPipeline):
"""
NLI-based zero-shot classification pipeline using a `ModelForSequenceClassification` trained on NLI (natural
language inference) tasks. Equivalent of `text-classification` pipelines, but these models don't require a
hardcoded number of potential classes, they can be chosen at runtime. It usually means it's slower but it is
**much** more flexible.
Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis
pair and passed to the pretrained model. Then, the logit for *entailment* is taken as the logit for the candidate
label being valid. Any NLI model can be used, but the id of the *entailment* label must be included in the model
config's :attr:*~transformers.PretrainedConfig.label2id*.
Example:
```python
>>> from transformers import pipeline
>>> oracle = pipeline(model="facebook/bart-large-mnli")
>>> oracle(
... "I have a problem with my iphone that needs to be resolved asap!!",
... candidate_labels=["urgent", "not urgent", "phone", "tablet", "computer"],
... )
{'sequence': 'I have a problem with my iphone that needs to be resolved asap!!', 'labels': ['urgent', 'phone', 'computer', 'not urgent', 'tablet'], 'scores': [0.504, 0.479, 0.013, 0.003, 0.002]}
>>> oracle(
... "I have a problem with my iphone that needs to be resolved asap!!",
... candidate_labels=["english", "german"],
... )
{'sequence': 'I have a problem with my iphone that needs to be resolved asap!!', 'labels': ['english', 'german'], 'scores': [0.814, 0.186]}
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This NLI pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"zero-shot-classification"`.
The models that this pipeline can use are models that have been fine-tuned on an NLI task. See the up-to-date list
of available models on [huggingface.co/models](https://huggingface.co./models?search=nli).
"""
def __init__(self, args_parser=ZeroShotClassificationArgumentHandler(), *args, **kwargs):
self._args_parser = args_parser
super().__init__(*args, **kwargs)
if self.entailment_id == -1:
logger.warning(
"Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to "
"-1. Define a descriptive label2id mapping in the model config to ensure correct outputs."
)
@property
def entailment_id(self):
for label, ind in self.model.config.label2id.items():
if label.lower().startswith("entail"):
return ind
return -1
def _parse_and_tokenize(
self, sequence_pairs, padding=True, add_special_tokens=True, truncation=TruncationStrategy.ONLY_FIRST, **kwargs
):
"""
Parse arguments and tokenize only_first so that hypothesis (label) is not truncated
"""
return_tensors = self.framework
if self.tokenizer.pad_token is None:
# Override for tokenizers not supporting padding
logger.error(
"Tokenizer was not supporting padding necessary for zero-shot, attempting to use "
" `pad_token=eos_token`"
)
self.tokenizer.pad_token = self.tokenizer.eos_token
try:
inputs = self.tokenizer(
sequence_pairs,
add_special_tokens=add_special_tokens,
return_tensors=return_tensors,
padding=padding,
truncation=truncation,
)
except Exception as e:
if "too short" in str(e):
# tokenizers might yell that we want to truncate
# to a value that is not even reached by the input.
# In that case we don't want to truncate.
# It seems there's not a really better way to catch that
# exception.
inputs = self.tokenizer(
sequence_pairs,
add_special_tokens=add_special_tokens,
return_tensors=return_tensors,
padding=padding,
truncation=TruncationStrategy.DO_NOT_TRUNCATE,
)
else:
raise e
return inputs
def _sanitize_parameters(self, **kwargs):
if kwargs.get("multi_class", None) is not None:
kwargs["multi_label"] = kwargs["multi_class"]
logger.warning(
"The `multi_class` argument has been deprecated and renamed to `multi_label`. "
"`multi_class` will be removed in a future version of Transformers."
)
preprocess_params = {}
if "candidate_labels" in kwargs:
preprocess_params["candidate_labels"] = self._args_parser._parse_labels(kwargs["candidate_labels"])
if "hypothesis_template" in kwargs:
preprocess_params["hypothesis_template"] = kwargs["hypothesis_template"]
postprocess_params = {}
if "multi_label" in kwargs:
postprocess_params["multi_label"] = kwargs["multi_label"]
return preprocess_params, {}, postprocess_params
def __call__(
self,
sequences: Union[str, List[str]],
*args,
**kwargs,
):
"""
Classify the sequence(s) given as inputs. See the [`ZeroShotClassificationPipeline`] documentation for more
information.
Args:
sequences (`str` or `List[str]`):
The sequence(s) to classify, will be truncated if the model input is too large.
candidate_labels (`str` or `List[str]`):
The set of possible class labels to classify each sequence into. Can be a single label, a string of
comma-separated labels, or a list of labels.
hypothesis_template (`str`, *optional*, defaults to `"This example is {}."`):
The template used to turn each label into an NLI-style hypothesis. This template must include a {} or
similar syntax for the candidate label to be inserted into the template. For example, the default
template is `"This example is {}."` With the candidate label `"sports"`, this would be fed into the
model like `"<cls> sequence to classify <sep> This example is sports . <sep>"`. The default template
works well in many cases, but it may be worthwhile to experiment with different templates depending on
the task setting.
multi_label (`bool`, *optional*, defaults to `False`):
Whether or not multiple candidate labels can be true. If `False`, the scores are normalized such that
the sum of the label likelihoods for each sequence is 1. If `True`, the labels are considered
independent and probabilities are normalized for each candidate by doing a softmax of the entailment
score vs. the contradiction score.
Return:
A `dict` or a list of `dict`: Each result comes as a dictionary with the following keys:
- **sequence** (`str`) -- The sequence for which this is the output.
- **labels** (`List[str]`) -- The labels sorted by order of likelihood.
- **scores** (`List[float]`) -- The probabilities for each of the labels.
"""
if len(args) == 0:
pass
elif len(args) == 1 and "candidate_labels" not in kwargs:
kwargs["candidate_labels"] = args[0]
else:
raise ValueError(f"Unable to understand extra arguments {args}")
return super().__call__(sequences, **kwargs)
def preprocess(self, inputs, candidate_labels=None, hypothesis_template="This example is {}."):
sequence_pairs, sequences = self._args_parser(inputs, candidate_labels, hypothesis_template)
for i, (candidate_label, sequence_pair) in enumerate(zip(candidate_labels, sequence_pairs)):
model_input = self._parse_and_tokenize([sequence_pair])
yield {
"candidate_label": candidate_label,
"sequence": sequences[0],
"is_last": i == len(candidate_labels) - 1,
**model_input,
}
def _forward(self, inputs):
candidate_label = inputs["candidate_label"]
sequence = inputs["sequence"]
model_inputs = {k: inputs[k] for k in self.tokenizer.model_input_names}
# `XXXForSequenceClassification` models should not use `use_cache=True` even if it's supported
model_forward = self.model.forward if self.framework == "pt" else self.model.call
if "use_cache" in inspect.signature(model_forward).parameters.keys():
model_inputs["use_cache"] = False
outputs = self.model(**model_inputs)
model_outputs = {
"candidate_label": candidate_label,
"sequence": sequence,
"is_last": inputs["is_last"],
**outputs,
}
return model_outputs
def postprocess(self, model_outputs, multi_label=False):
candidate_labels = [outputs["candidate_label"] for outputs in model_outputs]
sequences = [outputs["sequence"] for outputs in model_outputs]
logits = np.concatenate([output["logits"].numpy() for output in model_outputs])
N = logits.shape[0]
n = len(candidate_labels)
num_sequences = N // n
reshaped_outputs = logits.reshape((num_sequences, n, -1))
if multi_label or len(candidate_labels) == 1:
# softmax over the entailment vs. contradiction dim for each label independently
entailment_id = self.entailment_id
contradiction_id = -1 if entailment_id == 0 else 0
entail_contr_logits = reshaped_outputs[..., [contradiction_id, entailment_id]]
scores = np.exp(entail_contr_logits) / np.exp(entail_contr_logits).sum(-1, keepdims=True)
scores = scores[..., 1]
else:
# softmax the "entailment" logits over all candidate labels
entail_logits = reshaped_outputs[..., self.entailment_id]
scores = np.exp(entail_logits) / np.exp(entail_logits).sum(-1, keepdims=True)
top_inds = list(reversed(scores[0].argsort()))
return {
"sequence": sequences[0],
"labels": [candidate_labels[i] for i in top_inds],
"scores": scores[0, top_inds].tolist(),
}
|