Spaces:
Runtime error
Runtime error
File size: 17,076 Bytes
f8f5cdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
logger = logging.get_logger(__name__)
class ReturnType(enum.Enum):
TENSORS = 0
TEXT = 1
@add_end_docstrings(PIPELINE_INIT_ARGS)
class Text2TextGenerationPipeline(Pipeline):
"""
Pipeline for text to text generation using seq2seq models.
Example:
```python
>>> from transformers import pipeline
>>> generator = pipeline(model="mrm8488/t5-base-finetuned-question-generation-ap")
>>> generator(
... "answer: Manuel context: Manuel has created RuPERTa-base with the support of HF-Transformers and Google"
... )
[{'generated_text': 'question: Who created the RuPERTa-base?'}]
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial). You can pass text
generation parameters to this pipeline to control stopping criteria, decoding strategy, and more. Learn more about
text generation parameters in [Text generation strategies](../generation_strategies) and [Text
generation](text_generation).
This Text2TextGenerationPipeline pipeline can currently be loaded from [`pipeline`] using the following task
identifier: `"text2text-generation"`.
The models that this pipeline can use are models that have been fine-tuned on a translation task. See the
up-to-date list of available models on
[huggingface.co/models](https://huggingface.co./models?filter=text2text-generation). For a list of available
parameters, see the [following
documentation](https://huggingface.co./docs/transformers/en/main_classes/text_generation#transformers.generation.GenerationMixin.generate)
Usage:
```python
text2text_generator = pipeline("text2text-generation")
text2text_generator("question: What is 42 ? context: 42 is the answer to life, the universe and everything")
```"""
# Used in the return key of the pipeline.
return_name = "generated"
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
if self.framework == "tf"
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
def _sanitize_parameters(
self,
return_tensors=None,
return_text=None,
return_type=None,
clean_up_tokenization_spaces=None,
truncation=None,
stop_sequence=None,
**generate_kwargs,
):
preprocess_params = {}
if truncation is not None:
preprocess_params["truncation"] = truncation
forward_params = generate_kwargs
postprocess_params = {}
if return_tensors is not None and return_type is None:
return_type = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
postprocess_params["return_type"] = return_type
if clean_up_tokenization_spaces is not None:
postprocess_params["clean_up_tokenization_spaces"] = clean_up_tokenization_spaces
if stop_sequence is not None:
stop_sequence_ids = self.tokenizer.encode(stop_sequence, add_special_tokens=False)
if len(stop_sequence_ids) > 1:
warnings.warn(
"Stopping on a multiple token sequence is not yet supported on transformers. The first token of"
" the stop sequence will be used as the stop sequence string in the interim."
)
generate_kwargs["eos_token_id"] = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def check_inputs(self, input_length: int, min_length: int, max_length: int):
"""
Checks whether there might be something wrong with given input with regard to the model.
"""
return True
def _parse_and_tokenize(self, *args, truncation):
prefix = self.model.config.prefix if self.model.config.prefix is not None else ""
if isinstance(args[0], list):
if self.tokenizer.pad_token_id is None:
raise ValueError("Please make sure that the tokenizer has a pad_token_id when using a batch input")
args = ([prefix + arg for arg in args[0]],)
padding = True
elif isinstance(args[0], str):
args = (prefix + args[0],)
padding = False
else:
raise ValueError(
f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`"
)
inputs = self.tokenizer(*args, padding=padding, truncation=truncation, return_tensors=self.framework)
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__(self, *args, **kwargs):
r"""
Generate the output text(s) using text(s) given as inputs.
Args:
args (`str` or `List[str]`):
Input text for the encoder.
return_tensors (`bool`, *optional*, defaults to `False`):
Whether or not to include the tensors of predictions (as token indices) in the outputs.
return_text (`bool`, *optional*, defaults to `True`):
Whether or not to include the decoded texts in the outputs.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to clean up the potential extra spaces in the text output.
truncation (`TruncationStrategy`, *optional*, defaults to `TruncationStrategy.DO_NOT_TRUNCATE`):
The truncation strategy for the tokenization within the pipeline. `TruncationStrategy.DO_NOT_TRUNCATE`
(default) will never truncate, but it is sometimes desirable to truncate the input to fit the model's
max_length instead of throwing an error down the line.
generate_kwargs:
Additional keyword arguments to pass along to the generate method of the model (see the generate method
corresponding to your framework [here](./model#generative-models)).
Return:
A list or a list of list of `dict`: Each result comes as a dictionary with the following keys:
- **generated_text** (`str`, present when `return_text=True`) -- The generated text.
- **generated_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token
ids of the generated text.
"""
result = super().__call__(*args, **kwargs)
if (
isinstance(args[0], list)
and all(isinstance(el, str) for el in args[0])
and all(len(res) == 1 for res in result)
):
return [res[0] for res in result]
return result
def preprocess(self, inputs, truncation=TruncationStrategy.DO_NOT_TRUNCATE, **kwargs):
inputs = self._parse_and_tokenize(inputs, truncation=truncation, **kwargs)
return inputs
def _forward(self, model_inputs, **generate_kwargs):
if self.framework == "pt":
in_b, input_length = model_inputs["input_ids"].shape
elif self.framework == "tf":
in_b, input_length = tf.shape(model_inputs["input_ids"]).numpy()
self.check_inputs(
input_length,
generate_kwargs.get("min_length", self.model.config.min_length),
generate_kwargs.get("max_length", self.model.config.max_length),
)
output_ids = self.model.generate(**model_inputs, **generate_kwargs)
out_b = output_ids.shape[0]
if self.framework == "pt":
output_ids = output_ids.reshape(in_b, out_b // in_b, *output_ids.shape[1:])
elif self.framework == "tf":
output_ids = tf.reshape(output_ids, (in_b, out_b // in_b, *output_ids.shape[1:]))
return {"output_ids": output_ids}
def postprocess(self, model_outputs, return_type=ReturnType.TEXT, clean_up_tokenization_spaces=False):
records = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
record = {f"{self.return_name}_token_ids": output_ids}
elif return_type == ReturnType.TEXT:
record = {
f"{self.return_name}_text": self.tokenizer.decode(
output_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
)
}
records.append(record)
return records
@add_end_docstrings(PIPELINE_INIT_ARGS)
class SummarizationPipeline(Text2TextGenerationPipeline):
"""
Summarize news articles and other documents.
This summarizing pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"summarization"`.
The models that this pipeline can use are models that have been fine-tuned on a summarization task, which is
currently, '*bart-large-cnn*', '*t5-small*', '*t5-base*', '*t5-large*', '*t5-3b*', '*t5-11b*'. See the up-to-date
list of available models on [huggingface.co/models](https://huggingface.co./models?filter=summarization). For a list
of available parameters, see the [following
documentation](https://huggingface.co./docs/transformers/en/main_classes/text_generation#transformers.generation.GenerationMixin.generate)
Usage:
```python
# use bart in pytorch
summarizer = pipeline("summarization")
summarizer("An apple a day, keeps the doctor away", min_length=5, max_length=20)
# use t5 in tf
summarizer = pipeline("summarization", model="t5-base", tokenizer="t5-base", framework="tf")
summarizer("An apple a day, keeps the doctor away", min_length=5, max_length=20)
```"""
# Used in the return key of the pipeline.
return_name = "summary"
def __call__(self, *args, **kwargs):
r"""
Summarize the text(s) given as inputs.
Args:
documents (*str* or `List[str]`):
One or several articles (or one list of articles) to summarize.
return_text (`bool`, *optional*, defaults to `True`):
Whether or not to include the decoded texts in the outputs
return_tensors (`bool`, *optional*, defaults to `False`):
Whether or not to include the tensors of predictions (as token indices) in the outputs.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to clean up the potential extra spaces in the text output.
generate_kwargs:
Additional keyword arguments to pass along to the generate method of the model (see the generate method
corresponding to your framework [here](./model#generative-models)).
Return:
A list or a list of list of `dict`: Each result comes as a dictionary with the following keys:
- **summary_text** (`str`, present when `return_text=True`) -- The summary of the corresponding input.
- **summary_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token
ids of the summary.
"""
return super().__call__(*args, **kwargs)
def check_inputs(self, input_length: int, min_length: int, max_length: int) -> bool:
"""
Checks whether there might be something wrong with given input with regard to the model.
"""
if max_length < min_length:
logger.warning(f"Your min_length={min_length} must be inferior than your max_length={max_length}.")
if input_length < max_length:
logger.warning(
f"Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is "
"a summarization task, where outputs shorter than the input are typically wanted, you might "
f"consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})"
)
@add_end_docstrings(PIPELINE_INIT_ARGS)
class TranslationPipeline(Text2TextGenerationPipeline):
"""
Translates from one language to another.
This translation pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"translation_xx_to_yy"`.
The models that this pipeline can use are models that have been fine-tuned on a translation task. See the
up-to-date list of available models on [huggingface.co/models](https://huggingface.co./models?filter=translation).
For a list of available parameters, see the [following
documentation](https://huggingface.co./docs/transformers/en/main_classes/text_generation#transformers.generation.GenerationMixin.generate)
Usage:
```python
en_fr_translator = pipeline("translation_en_to_fr")
en_fr_translator("How old are you?")
```"""
# Used in the return key of the pipeline.
return_name = "translation"
def check_inputs(self, input_length: int, min_length: int, max_length: int):
if input_length > 0.9 * max_length:
logger.warning(
f"Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider "
"increasing your max_length manually, e.g. translator('...', max_length=400)"
)
return True
def preprocess(self, *args, truncation=TruncationStrategy.DO_NOT_TRUNCATE, src_lang=None, tgt_lang=None):
if getattr(self.tokenizer, "_build_translation_inputs", None):
return self.tokenizer._build_translation_inputs(
*args, return_tensors=self.framework, truncation=truncation, src_lang=src_lang, tgt_lang=tgt_lang
)
else:
return super()._parse_and_tokenize(*args, truncation=truncation)
def _sanitize_parameters(self, src_lang=None, tgt_lang=None, **kwargs):
preprocess_params, forward_params, postprocess_params = super()._sanitize_parameters(**kwargs)
if src_lang is not None:
preprocess_params["src_lang"] = src_lang
if tgt_lang is not None:
preprocess_params["tgt_lang"] = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
task = kwargs.get("task", self.task)
items = task.split("_")
if task and len(items) == 4:
# translation, XX, to YY
preprocess_params["src_lang"] = items[1]
preprocess_params["tgt_lang"] = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__(self, *args, **kwargs):
r"""
Translate the text(s) given as inputs.
Args:
args (`str` or `List[str]`):
Texts to be translated.
return_tensors (`bool`, *optional*, defaults to `False`):
Whether or not to include the tensors of predictions (as token indices) in the outputs.
return_text (`bool`, *optional*, defaults to `True`):
Whether or not to include the decoded texts in the outputs.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to clean up the potential extra spaces in the text output.
src_lang (`str`, *optional*):
The language of the input. Might be required for multilingual models. Will not have any effect for
single pair translation models
tgt_lang (`str`, *optional*):
The language of the desired output. Might be required for multilingual models. Will not have any effect
for single pair translation models
generate_kwargs:
Additional keyword arguments to pass along to the generate method of the model (see the generate method
corresponding to your framework [here](./model#generative-models)).
Return:
A list or a list of list of `dict`: Each result comes as a dictionary with the following keys:
- **translation_text** (`str`, present when `return_text=True`) -- The translation.
- **translation_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The
token ids of the translation.
"""
return super().__call__(*args, **kwargs)
|