File size: 7,852 Bytes
f8f5cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from argparse import ArgumentParser, Namespace

from ..utils import logging
from . import BaseTransformersCLICommand


def convert_command_factory(args: Namespace):
    """
    Factory function used to convert a model TF 1.0 checkpoint in a PyTorch checkpoint.

    Returns: ServeCommand
    """
    return ConvertCommand(
        args.model_type, args.tf_checkpoint, args.pytorch_dump_output, args.config, args.finetuning_task_name
    )


IMPORT_ERROR_MESSAGE = """
transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires
TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.
"""


class ConvertCommand(BaseTransformersCLICommand):
    @staticmethod
    def register_subcommand(parser: ArgumentParser):
        """
        Register this command to argparse so it's available for the transformer-cli

        Args:
            parser: Root parser to register command-specific arguments
        """
        train_parser = parser.add_parser(
            "convert",
            help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.",
        )
        train_parser.add_argument("--model_type", type=str, required=True, help="Model's type.")
        train_parser.add_argument(
            "--tf_checkpoint", type=str, required=True, help="TensorFlow checkpoint path or folder."
        )
        train_parser.add_argument(
            "--pytorch_dump_output", type=str, required=True, help="Path to the PyTorch saved model output."
        )
        train_parser.add_argument("--config", type=str, default="", help="Configuration file path or folder.")
        train_parser.add_argument(
            "--finetuning_task_name",
            type=str,
            default=None,
            help="Optional fine-tuning task name if the TF model was a finetuned model.",
        )
        train_parser.set_defaults(func=convert_command_factory)

    def __init__(
        self,
        model_type: str,
        tf_checkpoint: str,
        pytorch_dump_output: str,
        config: str,
        finetuning_task_name: str,
        *args,
    ):
        self._logger = logging.get_logger("transformers-cli/converting")

        self._logger.info(f"Loading model {model_type}")
        self._model_type = model_type
        self._tf_checkpoint = tf_checkpoint
        self._pytorch_dump_output = pytorch_dump_output
        self._config = config
        self._finetuning_task_name = finetuning_task_name

    def run(self):
        if self._model_type == "albert":
            try:
                from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
                    convert_tf_checkpoint_to_pytorch,
                )
            except ImportError:
                raise ImportError(IMPORT_ERROR_MESSAGE)

            convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
        elif self._model_type == "bert":
            try:
                from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
                    convert_tf_checkpoint_to_pytorch,
                )
            except ImportError:
                raise ImportError(IMPORT_ERROR_MESSAGE)

            convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
        elif self._model_type == "funnel":
            try:
                from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
                    convert_tf_checkpoint_to_pytorch,
                )
            except ImportError:
                raise ImportError(IMPORT_ERROR_MESSAGE)

            convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
        elif self._model_type == "t5":
            try:
                from ..models.t5.convert_t5_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
            except ImportError:
                raise ImportError(IMPORT_ERROR_MESSAGE)

            convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
        elif self._model_type == "gpt":
            from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
                convert_openai_checkpoint_to_pytorch,
            )

            convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
        elif self._model_type == "transfo_xl":
            try:
                from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
                    convert_transfo_xl_checkpoint_to_pytorch,
                )
            except ImportError:
                raise ImportError(IMPORT_ERROR_MESSAGE)

            if "ckpt" in self._tf_checkpoint.lower():
                TF_CHECKPOINT = self._tf_checkpoint
                TF_DATASET_FILE = ""
            else:
                TF_DATASET_FILE = self._tf_checkpoint
                TF_CHECKPOINT = ""
            convert_transfo_xl_checkpoint_to_pytorch(
                TF_CHECKPOINT, self._config, self._pytorch_dump_output, TF_DATASET_FILE
            )
        elif self._model_type == "gpt2":
            try:
                from ..models.gpt2.convert_gpt2_original_tf_checkpoint_to_pytorch import (
                    convert_gpt2_checkpoint_to_pytorch,
                )
            except ImportError:
                raise ImportError(IMPORT_ERROR_MESSAGE)

            convert_gpt2_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
        elif self._model_type == "xlnet":
            try:
                from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
                    convert_xlnet_checkpoint_to_pytorch,
                )
            except ImportError:
                raise ImportError(IMPORT_ERROR_MESSAGE)

            convert_xlnet_checkpoint_to_pytorch(
                self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name
            )
        elif self._model_type == "xlm":
            from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
                convert_xlm_checkpoint_to_pytorch,
            )

            convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output)
        elif self._model_type == "lxmert":
            from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
                convert_lxmert_checkpoint_to_pytorch,
            )

            convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output)
        elif self._model_type == "rembert":
            from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
                convert_rembert_tf_checkpoint_to_pytorch,
            )

            convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
        else:
            raise ValueError(
                "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]"
            )