import os import platform import sys import time import boto3 from botocore.exceptions import NoCredentialsError import logging import gradio as gr import torch from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread os.environ["TOKENIZERS_PARALLELISM"] = "0" os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" # device = "cuda" # has_gpu = torch.cuda.is_available() # device = "cuda" if has_gpu else "cpu" # print(f"Python Platform: {platform.platform()}") # print(f"Python Version: {sys.version}") # print(f"PyTorch Version: {torch.__version__}") # print("GPU Availability:", "Available" if has_gpu else "Not Available") # print(f"Target Device: {device}") # if has_gpu: # print(f"GPU Type: {torch.cuda.get_device_name(0)}") # print(f"CUDA Version: {torch.version.cuda}") # else: # print("CUDA is not available.") def download_xmad_file(): s3 = boto3.client('s3', aws_access_key_id=os.getenv('AWS_ACCESS_KEY_ID'), aws_secret_access_key=os.getenv('AWS_SECRET_ACCESS_KEY')) # Create the .codebooks directory if it doesn't exist codebooks_dir = '.codebooks' os.makedirs(codebooks_dir, exist_ok=True) temp_file_path = os.path.join(codebooks_dir, 'llama-3-8b-instruct_1bit.xmad') try: # Download the file to the .codebooks directory s3.download_file('xmad-quantized-models', 'llama-3-8b-instruct_1bit.xmad', temp_file_path) print("Download Successful") # Restrict permissions on the .codebooks directory os.chmod(codebooks_dir, 0o700) except NoCredentialsError: print("Credentials not available") download_xmad_file() def get_gpu_memory(): return torch.cuda.memory_allocated() / 1024 / 1024 # Convert to MiB class TorchTracemalloc: def __init__(self): self.begin = 0 self.peak = 0 def __enter__(self): torch.cuda.empty_cache() torch.cuda.reset_peak_memory_stats() torch.cuda.synchronize() self.begin = get_gpu_memory() return self def __exit__(self, *exc): torch.cuda.synchronize() self.peak = torch.cuda.max_memory_allocated() / 1024 / 1024 def consumed(self): return self.peak - self.begin def load_model_and_tokenizer(): model_name = "NousResearch/Meta-Llama-3-8B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) special_tokens = {"pad_token": ""} tokenizer.add_special_tokens(special_tokens) config = AutoConfig.from_pretrained(model_name) setattr( config, "quantizer_path", ".codebooks/llama-3-8b-instruct_1bit.xmad" ) setattr(config, "window_length", 32) # model = AutoModelForCausalLM.from_pretrained( # model_name, config=config, torch_dtype=torch.float16 # ).to(device) model = AutoModelForCausalLM.from_pretrained( model_name, config=config, torch_dtype=torch.float16, device_map="auto" ) print(f"Quantizer path in model config: {model.config.quantizer_path}") logging.info(f"Quantizer path in model config: {model.config.quantizer_path}") if len(tokenizer) > model.get_input_embeddings().weight.shape[0]: print( "WARNING: Resizing the embedding matrix to match the tokenizer vocab size." ) model.resize_token_embeddings(len(tokenizer)) tokenizer.padding_side = "left" model.config.pad_token_id = tokenizer.pad_token_id return model, tokenizer model, tokenizer = load_model_and_tokenizer() def process_dialog(message, history): terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>"), ] dialog = [ {"role": "user" if i % 2 == 0 else "assistant", "content": msg} for i, (msg, _) in enumerate(history) ] dialog.append({"role": "user", "content": message}) prompt = tokenizer.apply_chat_template( dialog, tokenize=False, add_generation_prompt=True ) tokenized_input_prompt_ids = tokenizer( prompt, return_tensors="pt" ).input_ids.to(model.device) start_time = time.time() with TorchTracemalloc() as tracemalloc: with torch.no_grad(): output = model.generate( tokenized_input_prompt_ids, # max_new_tokens=512, temperature=0.4, do_sample=True, eos_token_id=terminators, pad_token_id=tokenizer.pad_token_id, ) end_time = time.time() response = output[0][tokenized_input_prompt_ids.shape[-1] :] cleaned_response = tokenizer.decode( response, skip_special_tokens=True, clean_up_tokenization_spaces=True, ) generation_time = end_time - start_time gpu_memory = tracemalloc.consumed() return cleaned_response, generation_time, gpu_memory def chatbot_response(message, history): response, generation_time, gpu_memory = process_dialog(message, history) metrics = f"\n\n---\n\n **Metrics**\t*Answer Generation Time:* `{generation_time:.2f} sec`\t*GPU Memory Consumption:* `{gpu_memory:.2f} MiB`\n\n" return response + metrics def process_dialog_streaming(message, history): terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>"), ] dialog = [ {"role": "user" if i % 2 == 0 else "assistant", "content": msg} for i, (msg, _) in enumerate(history) ] dialog.append({"role": "user", "content": message}) prompt = tokenizer.apply_chat_template( dialog, tokenize=False, add_generation_prompt=True ) tokenized_input_prompt_ids = tokenizer( prompt, return_tensors="pt" ).input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) generation_kwargs = dict( inputs=tokenized_input_prompt_ids, streamer=streamer, max_new_tokens=512, temperature=0.4, do_sample=True, eos_token_id=terminators, pad_token_id=tokenizer.pad_token_id, ) start_time = time.time() total_tokens = 0 thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() generated_text = "" for new_text in streamer: generated_text += new_text total_tokens += 1 current_time = time.time() elapsed_time = current_time - start_time tokens_per_second = total_tokens / elapsed_time if elapsed_time > 0 else 0 print(f"Tokens per second: {tokens_per_second:.2f}", end="\r") yield generated_text, elapsed_time, tokens_per_second thread.join() def chatbot_response_streaming(message, history): for response, generation_time, tokens_per_second in process_dialog_streaming(message, history): metrics = f"\n\n---\n\n **Metrics**\t*Answer Generation Time:* `{generation_time:.2f} sec`\t*Tokens per Second:* `{tokens_per_second:.2f}`\n\n" yield response + metrics demo = gr.ChatInterface( fn=chatbot_response_streaming, examples=["Hello", "How are you?", "Tell me a joke"], title="Chat with xMAD's: 1-bit-Llama-3-8B-Instruct Model", description="Contact support@xmad.ai to set up a demo", ) if __name__ == "__main__": username = os.getenv("AUTH_USERNAME") password = os.getenv("AUTH_PASSWORD") demo.launch(auth=(username, password)) # demo.launch()