|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import gc |
|
import glob |
|
import json |
|
import os |
|
import os.path |
|
import sys |
|
import tempfile |
|
import threading |
|
import unittest |
|
import unittest.mock as mock |
|
import uuid |
|
from pathlib import Path |
|
|
|
import requests |
|
from huggingface_hub import HfApi, HfFolder, delete_repo |
|
from pytest import mark |
|
from requests.exceptions import HTTPError |
|
|
|
from transformers import ( |
|
AutoConfig, |
|
AutoModel, |
|
AutoModelForSequenceClassification, |
|
OwlViTForObjectDetection, |
|
PretrainedConfig, |
|
is_torch_available, |
|
logging, |
|
) |
|
from transformers.testing_utils import ( |
|
TOKEN, |
|
USER, |
|
CaptureLogger, |
|
LoggingLevel, |
|
TestCasePlus, |
|
is_staging_test, |
|
require_accelerate, |
|
require_flax, |
|
require_safetensors, |
|
require_tf, |
|
require_torch, |
|
require_torch_accelerator, |
|
require_torch_gpu, |
|
require_torch_multi_accelerator, |
|
require_usr_bin_time, |
|
slow, |
|
torch_device, |
|
) |
|
from transformers.utils import ( |
|
SAFE_WEIGHTS_INDEX_NAME, |
|
SAFE_WEIGHTS_NAME, |
|
WEIGHTS_INDEX_NAME, |
|
WEIGHTS_NAME, |
|
) |
|
from transformers.utils.import_utils import ( |
|
is_flash_attn_2_available, |
|
is_flax_available, |
|
is_tf_available, |
|
is_torch_sdpa_available, |
|
is_torchdynamo_available, |
|
) |
|
|
|
|
|
sys.path.append(str(Path(__file__).parent.parent / "utils")) |
|
|
|
from test_module.custom_configuration import CustomConfig, NoSuperInitConfig |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
from safetensors.torch import save_file as safe_save_file |
|
from test_module.custom_modeling import CustomModel, NoSuperInitModel |
|
from torch import nn |
|
|
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
BertConfig, |
|
BertModel, |
|
CLIPTextModel, |
|
PreTrainedModel, |
|
T5Config, |
|
T5ForConditionalGeneration, |
|
) |
|
from transformers.modeling_attn_mask_utils import ( |
|
AttentionMaskConverter, |
|
_create_4d_causal_attention_mask, |
|
_prepare_4d_attention_mask, |
|
_prepare_4d_causal_attention_mask, |
|
) |
|
from transformers.modeling_utils import _find_disjoint, _find_identical, shard_checkpoint |
|
|
|
|
|
class BaseModel(PreTrainedModel): |
|
base_model_prefix = "base" |
|
config_class = PretrainedConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.linear = nn.Linear(5, 5) |
|
self.linear_2 = nn.Linear(5, 5) |
|
|
|
def forward(self, x): |
|
return self.linear_2(self.linear(x)) |
|
|
|
class BaseModelWithTiedWeights(PreTrainedModel): |
|
config_class = PretrainedConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.linear = nn.Linear(5, 5) |
|
self.linear_2 = nn.Linear(5, 5) |
|
|
|
def forward(self, x): |
|
return self.linear_2(self.linear(x)) |
|
|
|
def tie_weights(self): |
|
self.linear_2.weight = self.linear.weight |
|
|
|
class ModelWithHead(PreTrainedModel): |
|
base_model_prefix = "base" |
|
config_class = PretrainedConfig |
|
|
|
def _init_weights(self, module): |
|
pass |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.base = BaseModel(config) |
|
|
|
self.linear = nn.Linear(5, 5) |
|
self.linear2 = nn.Linear(5, 5) |
|
|
|
def forward(self, x): |
|
return self.linear2(self.linear(self.base(x))) |
|
|
|
class ModelWithHeadAndTiedWeights(PreTrainedModel): |
|
base_model_prefix = "base" |
|
config_class = PretrainedConfig |
|
|
|
def _init_weights(self, module): |
|
pass |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.base = BaseModel(config) |
|
self.decoder = nn.Linear(5, 5) |
|
|
|
def forward(self, x): |
|
return self.decoder(self.base(x)) |
|
|
|
def tie_weights(self): |
|
self.decoder.weight = self.base.linear.weight |
|
|
|
class Prepare4dCausalAttentionMaskModel(nn.Module): |
|
def forward(self, inputs_embeds): |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
past_key_values_length = 4 |
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
None, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
return attention_mask |
|
|
|
class Create4dCausalAttentionMaskModel(nn.Module): |
|
def forward(self, inputs_embeds): |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
past_key_values_length = 4 |
|
attention_mask = _create_4d_causal_attention_mask( |
|
(batch_size, seq_length), |
|
dtype=inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
return attention_mask |
|
|
|
class Prepare4dAttentionMaskModel(nn.Module): |
|
def forward(self, mask, inputs_embeds): |
|
attention_mask = _prepare_4d_attention_mask(mask, dtype=inputs_embeds.dtype) |
|
return attention_mask |
|
|
|
|
|
if is_flax_available(): |
|
from transformers import FlaxBertModel |
|
|
|
if is_tf_available(): |
|
from transformers import TFBertModel |
|
|
|
|
|
TINY_T5 = "patrickvonplaten/t5-tiny-random" |
|
TINY_BERT_FOR_TOKEN_CLASSIFICATION = "hf-internal-testing/tiny-bert-for-token-classification" |
|
TINY_MISTRAL = "hf-internal-testing/tiny-random-MistralForCausalLM" |
|
|
|
|
|
def check_models_equal(model1, model2): |
|
models_are_equal = True |
|
for model1_p, model2_p in zip(model1.parameters(), model2.parameters()): |
|
if model1_p.data.ne(model2_p.data).sum() > 0: |
|
models_are_equal = False |
|
|
|
return models_are_equal |
|
|
|
|
|
@require_torch |
|
class ModelUtilsTest(TestCasePlus): |
|
@slow |
|
def test_model_from_pretrained(self): |
|
model_name = "google-bert/bert-base-uncased" |
|
config = BertConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, PretrainedConfig) |
|
|
|
model = BertModel.from_pretrained(model_name) |
|
model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, PreTrainedModel) |
|
|
|
self.assertEqual(len(loading_info["missing_keys"]), 0) |
|
self.assertEqual(len(loading_info["unexpected_keys"]), 8) |
|
self.assertEqual(len(loading_info["mismatched_keys"]), 0) |
|
self.assertEqual(len(loading_info["error_msgs"]), 0) |
|
|
|
config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True) |
|
|
|
|
|
config.name_or_path = model_name |
|
|
|
model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True) |
|
self.assertEqual(model.config.output_hidden_states, True) |
|
self.assertEqual(model.config, config) |
|
|
|
def test_model_from_pretrained_subfolder(self): |
|
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
model = BertModel(config) |
|
|
|
subfolder = "bert" |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(os.path.join(tmp_dir, subfolder)) |
|
|
|
with self.assertRaises(OSError): |
|
_ = BertModel.from_pretrained(tmp_dir) |
|
|
|
model_loaded = BertModel.from_pretrained(tmp_dir, subfolder=subfolder) |
|
|
|
self.assertTrue(check_models_equal(model, model_loaded)) |
|
|
|
def test_model_manually_shared_disjointed_tensors_optimum(self): |
|
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
model = BertModel(config) |
|
|
|
|
|
attn = model.encoder.layer[0].attention.self |
|
q = attn.query.weight |
|
k = attn.key.weight |
|
v = attn.value.weight |
|
|
|
qkv = torch.stack([q, k, v], dim=0) |
|
attn.query.weight = torch.nn.Parameter(qkv[0]) |
|
attn.key.weight = torch.nn.Parameter(qkv[1]) |
|
attn.value.weight = torch.nn.Parameter(qkv[2]) |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir) |
|
model_loaded = BertModel.from_pretrained(tmp_dir) |
|
|
|
self.assertTrue(check_models_equal(model, model_loaded)) |
|
|
|
def test_model_from_pretrained_subfolder_sharded(self): |
|
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
model = BertModel(config) |
|
|
|
subfolder = "bert" |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(os.path.join(tmp_dir, subfolder), max_shard_size="10KB") |
|
|
|
with self.assertRaises(OSError): |
|
_ = BertModel.from_pretrained(tmp_dir) |
|
|
|
model_loaded = BertModel.from_pretrained(tmp_dir, subfolder=subfolder) |
|
|
|
self.assertTrue(check_models_equal(model, model_loaded)) |
|
|
|
def test_model_from_pretrained_hub_subfolder(self): |
|
subfolder = "bert" |
|
model_id = "hf-internal-testing/tiny-random-bert-subfolder" |
|
with self.assertRaises(OSError): |
|
_ = BertModel.from_pretrained(model_id) |
|
|
|
model = BertModel.from_pretrained(model_id, subfolder=subfolder) |
|
|
|
self.assertIsNotNone(model) |
|
|
|
def test_model_from_pretrained_hub_subfolder_sharded(self): |
|
subfolder = "bert" |
|
model_id = "hf-internal-testing/tiny-random-bert-sharded-subfolder" |
|
with self.assertRaises(OSError): |
|
_ = BertModel.from_pretrained(model_id) |
|
|
|
model = BertModel.from_pretrained(model_id, subfolder=subfolder) |
|
|
|
self.assertIsNotNone(model) |
|
|
|
def test_model_from_pretrained_with_different_pretrained_model_name(self): |
|
model = T5ForConditionalGeneration.from_pretrained(TINY_T5) |
|
self.assertIsNotNone(model) |
|
|
|
logger = logging.get_logger("transformers.configuration_utils") |
|
with LoggingLevel(logging.WARNING): |
|
with CaptureLogger(logger) as cl: |
|
BertModel.from_pretrained(TINY_T5) |
|
self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out) |
|
|
|
@require_accelerate |
|
def test_model_from_pretrained_with_none_quantization_config(self): |
|
|
|
|
|
model = AutoModelForSequenceClassification.from_pretrained( |
|
TINY_MISTRAL, device_map="auto", quantization_config=None |
|
) |
|
self.assertIsNotNone(model) |
|
|
|
def test_model_from_config_torch_dtype(self): |
|
|
|
|
|
|
|
|
|
config = T5Config.from_pretrained(TINY_T5) |
|
model = AutoModel.from_config(config) |
|
|
|
|
|
self.assertEqual(model.dtype, torch.float32) |
|
|
|
model = AutoModel.from_config(config, torch_dtype=torch.float16) |
|
self.assertEqual(model.dtype, torch.float16) |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
model = AutoModel.from_config(config, torch_dtype=torch.int64) |
|
|
|
def test_model_from_pretrained_torch_dtype(self): |
|
|
|
|
|
|
|
|
|
|
|
|
|
model_path = self.get_auto_remove_tmp_dir() |
|
|
|
|
|
model = T5ForConditionalGeneration.from_pretrained(TINY_T5) |
|
self.assertEqual(model.dtype, torch.float32) |
|
|
|
def remove_torch_dtype(model_path): |
|
file = f"{model_path}/config.json" |
|
with open(file, "r", encoding="utf-8") as f: |
|
s = json.load(f) |
|
s.pop("torch_dtype") |
|
with open(file, "w", encoding="utf-8") as f: |
|
json.dump(s, f) |
|
|
|
|
|
model.save_pretrained(model_path) |
|
model = T5ForConditionalGeneration.from_pretrained(model_path) |
|
self.assertEqual(model.dtype, torch.float32) |
|
|
|
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto") |
|
self.assertEqual(model.dtype, torch.float32) |
|
|
|
|
|
|
|
remove_torch_dtype(model_path) |
|
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto") |
|
self.assertEqual(model.dtype, torch.float32) |
|
|
|
|
|
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16) |
|
self.assertEqual(model.dtype, torch.float16) |
|
|
|
|
|
model = model.half() |
|
model.save_pretrained(model_path) |
|
|
|
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto") |
|
self.assertEqual(model.config.torch_dtype, torch.float16) |
|
self.assertEqual(model.dtype, torch.float16) |
|
|
|
with open(f"{model_path}/config.json") as f: |
|
config_dict = json.load(f) |
|
self.assertEqual(config_dict["torch_dtype"], "float16") |
|
|
|
|
|
remove_torch_dtype(model_path) |
|
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto") |
|
self.assertEqual(model.dtype, torch.float16) |
|
|
|
|
|
model = AutoModel.from_pretrained(model_path, torch_dtype="auto") |
|
self.assertEqual(model.dtype, torch.float16) |
|
|
|
|
|
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16) |
|
self.assertEqual(model.dtype, torch.float16) |
|
|
|
|
|
|
|
model = AutoModel.from_pretrained(TINY_T5, torch_dtype="auto") |
|
|
|
|
|
self.assertNotEqual(model.config.torch_dtype, "auto") |
|
|
|
self.assertEqual(model.dtype, torch.float32) |
|
model = AutoModel.from_pretrained(TINY_T5, torch_dtype=torch.float16) |
|
self.assertEqual(model.dtype, torch.float16) |
|
|
|
|
|
model = AutoModel.from_pretrained(TINY_BERT_FOR_TOKEN_CLASSIFICATION, torch_dtype="auto") |
|
self.assertEqual(model.dtype, torch.float32) |
|
|
|
def test_model_from_pretrained_attn_implementation(self): |
|
|
|
|
|
|
|
attn_implementation_available = ["eager"] |
|
if is_torch_sdpa_available(): |
|
attn_implementation_available.append("sdpa") |
|
|
|
if is_flash_attn_2_available(): |
|
attn_implementation_available.append("flash_attention_2") |
|
|
|
mistral_attention_classes = { |
|
"eager": "MistralAttention", |
|
"sdpa": "MistralSdpaAttention", |
|
"flash_attention_2": "MistralFlashAttention2", |
|
} |
|
for requested_attn_implementation in attn_implementation_available: |
|
model = AutoModelForCausalLM.from_pretrained( |
|
TINY_MISTRAL, attn_implementation=requested_attn_implementation |
|
) |
|
self.assertEqual(model.config._attn_implementation, requested_attn_implementation) |
|
for module in model.modules(): |
|
if "Attention" in module.__class__.__name__: |
|
self.assertEqual( |
|
module.__class__.__name__, mistral_attention_classes[requested_attn_implementation] |
|
) |
|
|
|
config = AutoConfig.from_pretrained(TINY_MISTRAL) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
TINY_MISTRAL, config=config, attn_implementation=requested_attn_implementation |
|
) |
|
self.assertEqual(model.config._attn_implementation, requested_attn_implementation) |
|
for module in model.modules(): |
|
if "Attention" in module.__class__.__name__: |
|
self.assertEqual( |
|
module.__class__.__name__, mistral_attention_classes[requested_attn_implementation] |
|
) |
|
|
|
def test_no_super_init_config_and_model(self): |
|
config = NoSuperInitConfig(attribute=32) |
|
model = NoSuperInitModel(config) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir) |
|
|
|
new_model = NoSuperInitModel.from_pretrained(tmp_dir) |
|
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
def test_shard_checkpoint(self): |
|
|
|
model = torch.nn.Sequential( |
|
torch.nn.Linear(100, 200, bias=False), |
|
torch.nn.Linear(200, 200, bias=False), |
|
torch.nn.Linear(200, 100, bias=False), |
|
torch.nn.Linear(100, 50, bias=False), |
|
) |
|
state_dict = model.state_dict() |
|
|
|
with self.subTest("No shard when max size is bigger than model size"): |
|
shards, index = shard_checkpoint(state_dict) |
|
self.assertIsNone(index) |
|
self.assertDictEqual(shards, {WEIGHTS_NAME: state_dict}) |
|
|
|
with self.subTest("Test sharding, no weights bigger than max size"): |
|
shards, index = shard_checkpoint(state_dict, max_shard_size="300kB") |
|
|
|
self.assertDictEqual( |
|
index, |
|
{ |
|
"metadata": {"total_size": 340000}, |
|
"weight_map": { |
|
"0.weight": "pytorch_model-00001-of-00002.bin", |
|
"1.weight": "pytorch_model-00001-of-00002.bin", |
|
"2.weight": "pytorch_model-00002-of-00002.bin", |
|
"3.weight": "pytorch_model-00002-of-00002.bin", |
|
}, |
|
}, |
|
) |
|
|
|
shard1 = {"0.weight": state_dict["0.weight"], "1.weight": state_dict["1.weight"]} |
|
shard2 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]} |
|
self.assertDictEqual( |
|
shards, {"pytorch_model-00001-of-00002.bin": shard1, "pytorch_model-00002-of-00002.bin": shard2} |
|
) |
|
|
|
with self.subTest("Test sharding with weights bigger than max size"): |
|
shards, index = shard_checkpoint(state_dict, max_shard_size="100kB") |
|
|
|
self.assertDictEqual( |
|
index, |
|
{ |
|
"metadata": {"total_size": 340000}, |
|
"weight_map": { |
|
"0.weight": "pytorch_model-00001-of-00003.bin", |
|
"1.weight": "pytorch_model-00002-of-00003.bin", |
|
"2.weight": "pytorch_model-00003-of-00003.bin", |
|
"3.weight": "pytorch_model-00003-of-00003.bin", |
|
}, |
|
}, |
|
) |
|
|
|
shard1 = {"0.weight": state_dict["0.weight"]} |
|
shard2 = {"1.weight": state_dict["1.weight"]} |
|
shard3 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]} |
|
self.assertDictEqual( |
|
shards, |
|
{ |
|
"pytorch_model-00001-of-00003.bin": shard1, |
|
"pytorch_model-00002-of-00003.bin": shard2, |
|
"pytorch_model-00003-of-00003.bin": shard3, |
|
}, |
|
) |
|
|
|
def test_checkpoint_sharding_local_bin(self): |
|
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
|
|
for max_size in ["50kB", "50kiB", "100kB", "100kiB", "200kB", "200kiB"]: |
|
model.save_pretrained(tmp_dir, max_shard_size=max_size, safe_serialization=False) |
|
|
|
|
|
shard_to_size = {} |
|
for shard in os.listdir(tmp_dir): |
|
if shard.endswith(".bin"): |
|
shard_file = os.path.join(tmp_dir, shard) |
|
shard_to_size[shard_file] = os.path.getsize(shard_file) |
|
|
|
index_file = os.path.join(tmp_dir, WEIGHTS_INDEX_NAME) |
|
|
|
self.assertTrue(os.path.isfile(index_file)) |
|
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME))) |
|
|
|
|
|
for shard_file, size in shard_to_size.items(): |
|
if max_size.endswith("kiB"): |
|
max_size_int = int(max_size[:-3]) * 2**10 |
|
else: |
|
max_size_int = int(max_size[:-2]) * 10**3 |
|
|
|
|
|
if size >= max_size_int + 50000: |
|
state_dict = torch.load(shard_file) |
|
self.assertEqual(len(state_dict), 1) |
|
|
|
|
|
with open(index_file, "r", encoding="utf-8") as f: |
|
index = json.loads(f.read()) |
|
|
|
all_shards = set(index["weight_map"].values()) |
|
shards_found = {f for f in os.listdir(tmp_dir) if f.endswith(".bin")} |
|
self.assertSetEqual(all_shards, shards_found) |
|
|
|
|
|
new_model = BertModel.from_pretrained(tmp_dir) |
|
for p1, p2 in zip(model.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.allclose(p1, p2)) |
|
|
|
def test_checkpoint_sharding_from_hub(self): |
|
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded") |
|
|
|
ref_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
for p1, p2 in zip(model.parameters(), ref_model.parameters()): |
|
self.assertTrue(torch.allclose(p1, p2)) |
|
|
|
def test_checkpoint_variant_local_bin(self): |
|
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir, variant="v2", safe_serialization=False) |
|
|
|
weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"]) |
|
|
|
weights_file = os.path.join(tmp_dir, weights_name) |
|
self.assertTrue(os.path.isfile(weights_file)) |
|
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME))) |
|
|
|
with self.assertRaises(EnvironmentError): |
|
_ = BertModel.from_pretrained(tmp_dir) |
|
|
|
new_model = BertModel.from_pretrained(tmp_dir, variant="v2") |
|
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.allclose(p1, p2)) |
|
|
|
def test_checkpoint_variant_local_sharded_bin(self): |
|
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir, variant="v2", max_shard_size="50kB", safe_serialization=False) |
|
|
|
weights_index_name = ".".join(WEIGHTS_INDEX_NAME.split(".")[:-1] + ["v2"] + ["json"]) |
|
weights_index_file = os.path.join(tmp_dir, weights_index_name) |
|
self.assertTrue(os.path.isfile(weights_index_file)) |
|
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_INDEX_NAME))) |
|
|
|
for i in range(1, 5): |
|
weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + [f"v2-0000{i}-of-00005"] + ["bin"]) |
|
weights_name_file = os.path.join(tmp_dir, weights_name) |
|
self.assertTrue(os.path.isfile(weights_name_file)) |
|
|
|
with self.assertRaises(EnvironmentError): |
|
_ = BertModel.from_pretrained(tmp_dir) |
|
|
|
new_model = BertModel.from_pretrained(tmp_dir, variant="v2") |
|
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.allclose(p1, p2)) |
|
|
|
@require_safetensors |
|
def test_checkpoint_variant_local_safe(self): |
|
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir, variant="v2", safe_serialization=True) |
|
|
|
weights_name = ".".join(SAFE_WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["safetensors"]) |
|
|
|
weights_file = os.path.join(tmp_dir, weights_name) |
|
self.assertTrue(os.path.isfile(weights_file)) |
|
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) |
|
|
|
with self.assertRaises(EnvironmentError): |
|
_ = BertModel.from_pretrained(tmp_dir) |
|
|
|
new_model = BertModel.from_pretrained(tmp_dir, variant="v2") |
|
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.allclose(p1, p2)) |
|
|
|
@require_safetensors |
|
def test_checkpoint_variant_local_sharded_safe(self): |
|
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir, variant="v2", max_shard_size="50kB", safe_serialization=True) |
|
|
|
weights_index_name = ".".join(SAFE_WEIGHTS_INDEX_NAME.split(".")[:-1] + ["v2"] + ["json"]) |
|
weights_index_file = os.path.join(tmp_dir, weights_index_name) |
|
self.assertTrue(os.path.isfile(weights_index_file)) |
|
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))) |
|
|
|
for i in range(1, 5): |
|
weights_name = ".".join(SAFE_WEIGHTS_NAME.split(".")[:-1] + [f"v2-0000{i}-of-00005"] + ["safetensors"]) |
|
weights_name_file = os.path.join(tmp_dir, weights_name) |
|
self.assertTrue(os.path.isfile(weights_name_file)) |
|
|
|
with self.assertRaises(EnvironmentError): |
|
_ = BertModel.from_pretrained(tmp_dir) |
|
|
|
new_model = BertModel.from_pretrained(tmp_dir, variant="v2") |
|
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.allclose(p1, p2)) |
|
|
|
def test_checkpoint_variant_hub(self): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
with self.assertRaises(EnvironmentError): |
|
_ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir) |
|
model = BertModel.from_pretrained( |
|
"hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir, variant="v2" |
|
) |
|
self.assertIsNotNone(model) |
|
|
|
def test_checkpoint_variant_hub_sharded(self): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
with self.assertRaises(EnvironmentError): |
|
_ = BertModel.from_pretrained( |
|
"hf-internal-testing/tiny-random-bert-variant-sharded", cache_dir=tmp_dir |
|
) |
|
model = BertModel.from_pretrained( |
|
"hf-internal-testing/tiny-random-bert-variant-sharded", cache_dir=tmp_dir, variant="v2" |
|
) |
|
self.assertIsNotNone(model) |
|
|
|
@require_safetensors |
|
def test_checkpoint_variant_hub_safe(self): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
with self.assertRaises(EnvironmentError): |
|
_ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-variant-safe", cache_dir=tmp_dir) |
|
model = BertModel.from_pretrained( |
|
"hf-internal-testing/tiny-random-bert-variant-safe", cache_dir=tmp_dir, variant="v2" |
|
) |
|
self.assertIsNotNone(model) |
|
|
|
@require_safetensors |
|
def test_checkpoint_variant_hub_sharded_safe(self): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
with self.assertRaises(EnvironmentError): |
|
_ = BertModel.from_pretrained( |
|
"hf-internal-testing/tiny-random-bert-variant-sharded-safe", cache_dir=tmp_dir |
|
) |
|
model = BertModel.from_pretrained( |
|
"hf-internal-testing/tiny-random-bert-variant-sharded-safe", cache_dir=tmp_dir, variant="v2" |
|
) |
|
self.assertIsNotNone(model) |
|
|
|
def test_checkpoint_variant_save_load_bin(self): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model = BertModel.from_pretrained( |
|
"hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir, variant="v2" |
|
) |
|
weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"]) |
|
|
|
model.save_pretrained(tmp_dir, variant="v2", safe_serialization=False) |
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, weights_name))) |
|
|
|
model.save_pretrained(tmp_dir, safe_serialization=False) |
|
|
|
weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"]) |
|
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, weights_name))) |
|
|
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME))) |
|
|
|
self.assertIsNotNone(model) |
|
|
|
@require_accelerate |
|
@mark.accelerate_tests |
|
def test_from_pretrained_low_cpu_mem_usage_functional(self): |
|
|
|
|
|
|
|
mnames = [ |
|
"hf-internal-testing/tiny-random-bert-sharded", |
|
"hf-internal-testing/tiny-random-bert", |
|
] |
|
for mname in mnames: |
|
_ = BertModel.from_pretrained(mname, low_cpu_mem_usage=True) |
|
|
|
@require_usr_bin_time |
|
@require_accelerate |
|
@mark.accelerate_tests |
|
def test_from_pretrained_low_cpu_mem_usage_measured(self): |
|
|
|
|
|
mname = "google-bert/bert-base-cased" |
|
|
|
preamble = "from transformers import AutoModel" |
|
one_liner_str = f'{preamble}; AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=False)' |
|
max_rss_normal = self.python_one_liner_max_rss(one_liner_str) |
|
|
|
|
|
one_liner_str = f'{preamble}; AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=True)' |
|
max_rss_low_mem = self.python_one_liner_max_rss(one_liner_str) |
|
|
|
|
|
diff_bytes = max_rss_normal - max_rss_low_mem |
|
diff_percent = diff_bytes / max_rss_low_mem |
|
|
|
|
|
|
|
|
|
|
|
self.assertGreater( |
|
diff_percent, |
|
0.15, |
|
"should use less CPU memory for low_cpu_mem_usage=True, " |
|
f"but got max_rss_normal={max_rss_normal} and max_rss_low_mem={max_rss_low_mem}", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@require_accelerate |
|
@mark.accelerate_tests |
|
@require_torch_multi_accelerator |
|
@slow |
|
def test_model_parallelism_gpt2(self): |
|
device_map = {"transformer.wte": 0, "transformer.wpe": 0, "lm_head": 0, "transformer.ln_f": 1} |
|
for i in range(12): |
|
device_map[f"transformer.h.{i}"] = 0 if i <= 5 else 1 |
|
|
|
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2", device_map=device_map) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") |
|
inputs = tokenizer("Hello, my name is", return_tensors="pt") |
|
output = model.generate(inputs["input_ids"].to(f"{torch_device}:0")) |
|
|
|
text_output = tokenizer.decode(output[0].tolist()) |
|
self.assertEqual(text_output, "Hello, my name is John. I'm a writer, and I'm a writer. I'm") |
|
|
|
@require_accelerate |
|
@mark.accelerate_tests |
|
@require_torch_accelerator |
|
def test_from_pretrained_disk_offload_task_model(self): |
|
model = AutoModel.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
device_map = { |
|
"transformer.wte": f"{torch_device}:0", |
|
"transformer.wpe": f"{torch_device}:0", |
|
"transformer.h.0": "cpu", |
|
"transformer.h.1": "cpu", |
|
"transformer.h.2": "cpu", |
|
"transformer.h.3": "disk", |
|
"transformer.h.4": "disk", |
|
"transformer.ln_f": f"{torch_device}:0", |
|
"lm_head": f"{torch_device}:0", |
|
} |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
inputs = torch.tensor([[1, 2, 3]]).to(f"{torch_device}:0") |
|
|
|
model.save_pretrained(tmp_dir) |
|
new_model = AutoModelForCausalLM.from_pretrained(tmp_dir).to(f"{torch_device}:0") |
|
outputs1 = new_model.to(f"{torch_device}:0")(inputs) |
|
|
|
offload_folder = os.path.join(tmp_dir, "offload") |
|
new_model_with_offload = AutoModelForCausalLM.from_pretrained( |
|
tmp_dir, device_map=device_map, offload_folder=offload_folder |
|
) |
|
outputs2 = new_model_with_offload(inputs) |
|
|
|
self.assertTrue(torch.allclose(outputs1.logits.cpu(), outputs2.logits.cpu())) |
|
|
|
|
|
new_model_with_offload = AutoModelForCausalLM.from_pretrained( |
|
tmp_dir, |
|
device_map=device_map, |
|
offload_folder=offload_folder, |
|
offload_state_dict=True, |
|
) |
|
outputs2 = new_model_with_offload(inputs) |
|
self.assertTrue(torch.allclose(outputs1.logits.cpu(), outputs2.logits.cpu())) |
|
|
|
@require_accelerate |
|
@mark.accelerate_tests |
|
@require_torch_accelerator |
|
def test_from_pretrained_disk_offload_derived_to_base_model(self): |
|
derived_model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
|
|
device_map = { |
|
"wte": f"{torch_device}:0", |
|
"wpe": f"{torch_device}:0", |
|
"h.0": "cpu", |
|
"h.1": "cpu", |
|
"h.2": "cpu", |
|
"h.3": "disk", |
|
"h.4": "disk", |
|
"ln_f": f"{torch_device}:0", |
|
} |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
inputs = torch.tensor([[1, 2, 3]]).to(f"{torch_device}:0") |
|
derived_model.save_pretrained(tmp_dir, use_safetensors=True) |
|
base_model = AutoModel.from_pretrained(tmp_dir) |
|
outputs1 = base_model.to(f"{torch_device}:0")(inputs) |
|
|
|
|
|
offload_folder = os.path.join(tmp_dir, "offload") |
|
base_model_with_offload = AutoModel.from_pretrained( |
|
tmp_dir, device_map=device_map, offload_folder=offload_folder |
|
) |
|
outputs2 = base_model_with_offload(inputs) |
|
self.assertTrue(torch.allclose(outputs1[0].cpu(), outputs2[0].cpu())) |
|
|
|
|
|
new_model_with_offload = AutoModel.from_pretrained( |
|
tmp_dir, |
|
device_map=device_map, |
|
offload_folder=offload_folder, |
|
offload_state_dict=True, |
|
) |
|
outputs2 = new_model_with_offload(inputs) |
|
self.assertTrue(torch.allclose(outputs1[0].cpu(), outputs2[0].cpu())) |
|
|
|
@slow |
|
@require_torch |
|
def test_from_pretrained_non_contiguous_checkpoint(self): |
|
|
|
|
|
model = OwlViTForObjectDetection.from_pretrained("fxmarty/owlvit-tiny-non-contiguous-weight") |
|
self.assertTrue(model.owlvit.visual_projection.weight.is_contiguous()) |
|
|
|
model = OwlViTForObjectDetection.from_pretrained( |
|
"fxmarty/owlvit-tiny-non-contiguous-weight", device_map="auto" |
|
) |
|
self.assertTrue(model.owlvit.visual_projection.weight.is_contiguous()) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir, safe_serialization=False) |
|
model.save_pretrained(tmp_dir, safe_serialization=True) |
|
|
|
def test_cached_files_are_used_when_internet_is_down(self): |
|
|
|
response_mock = mock.Mock() |
|
response_mock.status_code = 500 |
|
response_mock.headers = {} |
|
response_mock.raise_for_status.side_effect = HTTPError |
|
response_mock.json.return_value = {} |
|
|
|
|
|
_ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
|
|
|
|
with mock.patch("requests.Session.request", return_value=response_mock) as mock_head: |
|
_ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
|
|
mock_head.assert_called() |
|
|
|
@require_safetensors |
|
def test_use_safetensors(self): |
|
|
|
AutoModel.from_pretrained("hf-internal-testing/tiny-random-RobertaModel", use_safetensors=True) |
|
|
|
|
|
with self.assertRaises(OSError) as env_error: |
|
BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors", use_safetensors=False) |
|
|
|
self.assertTrue("does not appear to have a file named pytorch_model.bin" in str(env_error.exception)) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
CLIPTextModel.from_pretrained( |
|
"hf-internal-testing/diffusers-stable-diffusion-tiny-all", |
|
subfolder="text_encoder", |
|
use_safetensors=False, |
|
cache_dir=tmp_dir, |
|
) |
|
|
|
all_downloaded_files = glob.glob(os.path.join(tmp_dir, "*", "snapshots", "*", "*", "*")) |
|
self.assertTrue(any(f.endswith("bin") for f in all_downloaded_files)) |
|
self.assertFalse(any(f.endswith("safetensors") for f in all_downloaded_files)) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
CLIPTextModel.from_pretrained( |
|
"hf-internal-testing/diffusers-stable-diffusion-tiny-all", |
|
subfolder="text_encoder", |
|
use_safetensors=True, |
|
cache_dir=tmp_dir, |
|
) |
|
|
|
all_downloaded_files = glob.glob(os.path.join(tmp_dir, "*", "snapshots", "*", "*", "*")) |
|
self.assertTrue(any(f.endswith("safetensors") for f in all_downloaded_files)) |
|
self.assertFalse(any(f.endswith("bin") for f in all_downloaded_files)) |
|
|
|
@require_safetensors |
|
def test_safetensors_save_and_load(self): |
|
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir, safe_serialization=True) |
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) |
|
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME))) |
|
|
|
new_model = BertModel.from_pretrained(tmp_dir) |
|
|
|
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.allclose(p1, p2)) |
|
|
|
@require_safetensors |
|
def test_safetensors_load_from_hub(self): |
|
safetensors_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors") |
|
pytorch_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
|
|
|
|
for p1, p2 in zip(safetensors_model.parameters(), pytorch_model.parameters()): |
|
self.assertTrue(torch.allclose(p1, p2)) |
|
|
|
@require_safetensors |
|
def test_safetensors_save_and_load_sharded(self): |
|
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir, safe_serialization=True, max_shard_size="100kB") |
|
|
|
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_INDEX_NAME))) |
|
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))) |
|
|
|
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME))) |
|
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) |
|
|
|
new_model = BertModel.from_pretrained(tmp_dir) |
|
|
|
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.allclose(p1, p2)) |
|
|
|
@require_safetensors |
|
def test_safetensors_load_from_hub_sharded(self): |
|
safetensors_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded-safetensors") |
|
pytorch_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded") |
|
|
|
|
|
for p1, p2 in zip(safetensors_model.parameters(), pytorch_model.parameters()): |
|
self.assertTrue(torch.allclose(p1, p2)) |
|
|
|
def test_base_model_to_head_model_load(self): |
|
base_model = BaseModel(PretrainedConfig()) |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
base_model.save_pretrained(tmp_dir, safe_serialization=False) |
|
|
|
|
|
model = ModelWithHead.from_pretrained(tmp_dir) |
|
for p1, p2 in zip(model.base.parameters(), base_model.parameters()): |
|
self.assertTrue(torch.allclose(p1, p2)) |
|
|
|
|
|
base_state_dict = base_model.state_dict() |
|
head_state_dict = model.state_dict() |
|
base_state_dict["linear2.weight"] = head_state_dict["linear2.weight"] |
|
base_state_dict["linear2.bias"] = head_state_dict["linear2.bias"] |
|
safe_save_file(base_state_dict, os.path.join(tmp_dir, SAFE_WEIGHTS_NAME), metadata={"format": "pt"}) |
|
|
|
with self.assertRaisesRegex( |
|
ValueError, "The state dictionary of the model you are trying to load is corrupted." |
|
): |
|
_ = ModelWithHead.from_pretrained(tmp_dir) |
|
|
|
def test_tied_weights_reload(self): |
|
|
|
model = BaseModelWithTiedWeights(PretrainedConfig()) |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir) |
|
|
|
new_model = BaseModelWithTiedWeights.from_pretrained(tmp_dir) |
|
self.assertIs(new_model.linear.weight, new_model.linear_2.weight) |
|
|
|
state_dict = model.state_dict() |
|
|
|
del state_dict["linear_2.weight"] |
|
torch.save(state_dict, os.path.join(tmp_dir, WEIGHTS_NAME)) |
|
new_model, load_info = BaseModelWithTiedWeights.from_pretrained(tmp_dir, output_loading_info=True) |
|
self.assertListEqual(load_info["missing_keys"], []) |
|
self.assertIs(new_model.linear.weight, new_model.linear_2.weight) |
|
|
|
|
|
model.save_pretrained(tmp_dir) |
|
new_model, load_info = ModelWithHeadAndTiedWeights.from_pretrained(tmp_dir, output_loading_info=True) |
|
self.assertIs(new_model.base.linear.weight, new_model.decoder.weight) |
|
|
|
self.assertListEqual(load_info["missing_keys"], ["decoder.bias"]) |
|
|
|
def test_unexpected_keys_warnings(self): |
|
model = ModelWithHead(PretrainedConfig()) |
|
logger = logging.get_logger("transformers.modeling_utils") |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir) |
|
|
|
|
|
with LoggingLevel(logging.WARNING): |
|
with CaptureLogger(logger) as cl: |
|
_, loading_info = BaseModel.from_pretrained(tmp_dir, output_loading_info=True) |
|
self.assertNotIn("were not used when initializing ModelWithHead", cl.out) |
|
self.assertEqual( |
|
set(loading_info["unexpected_keys"]), |
|
{"linear.weight", "linear.bias", "linear2.weight", "linear2.bias"}, |
|
) |
|
|
|
|
|
state_dict = model.state_dict() |
|
state_dict["added_key"] = copy.deepcopy(state_dict["linear.weight"]) |
|
safe_save_file(state_dict, os.path.join(tmp_dir, SAFE_WEIGHTS_NAME), metadata={"format": "pt"}) |
|
with LoggingLevel(logging.WARNING): |
|
with CaptureLogger(logger) as cl: |
|
_, loading_info = ModelWithHead.from_pretrained(tmp_dir, output_loading_info=True) |
|
self.assertIn("were not used when initializing ModelWithHead: ['added_key']", cl.out) |
|
self.assertEqual(loading_info["unexpected_keys"], ["added_key"]) |
|
|
|
def test_warn_if_padding_and_no_attention_mask(self): |
|
logger = logging.get_logger("transformers.modeling_utils") |
|
|
|
with self.subTest("Ensure no warnings when pad_token_id is None."): |
|
logger.warning_once.cache_clear() |
|
with LoggingLevel(logging.WARNING): |
|
with CaptureLogger(logger) as cl: |
|
config_no_pad_token = PretrainedConfig() |
|
config_no_pad_token.pad_token_id = None |
|
model = ModelWithHead(config_no_pad_token) |
|
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 0, 0]]) |
|
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None) |
|
self.assertNotIn("We strongly recommend passing in an `attention_mask`", cl.out) |
|
|
|
with self.subTest("Ensure no warnings when there is an attention_mask."): |
|
logger.warning_once.cache_clear() |
|
with LoggingLevel(logging.WARNING): |
|
with CaptureLogger(logger) as cl: |
|
config = PretrainedConfig() |
|
config.pad_token_id = 0 |
|
model = ModelWithHead(config) |
|
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 0, 0]]) |
|
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]]) |
|
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) |
|
self.assertNotIn("We strongly recommend passing in an `attention_mask`", cl.out) |
|
|
|
with self.subTest("Ensure no warnings when there are no pad_token_ids in the input_ids."): |
|
logger.warning_once.cache_clear() |
|
with LoggingLevel(logging.WARNING): |
|
with CaptureLogger(logger) as cl: |
|
config = PretrainedConfig() |
|
config.pad_token_id = 0 |
|
model = ModelWithHead(config) |
|
input_ids = torch.tensor([[1, 345, 232, 328, 740, 140, 1695, 69, 6078, 2341, 25]]) |
|
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None) |
|
self.assertNotIn("We strongly recommend passing in an `attention_mask`", cl.out) |
|
|
|
with self.subTest("Ensure a warning is shown when the input_ids start with a pad_token_id."): |
|
logger.warning_once.cache_clear() |
|
with LoggingLevel(logging.WARNING): |
|
with CaptureLogger(logger) as cl: |
|
config = PretrainedConfig() |
|
config.pad_token_id = 0 |
|
model = ModelWithHead(config) |
|
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 432, 5232]]) |
|
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None) |
|
self.assertIn("We strongly recommend passing in an `attention_mask`", cl.out) |
|
|
|
with self.subTest("Ensure a warning is shown when the input_ids end with a pad_token_id."): |
|
logger.warning_once.cache_clear() |
|
with LoggingLevel(logging.WARNING): |
|
with CaptureLogger(logger) as cl: |
|
config = PretrainedConfig() |
|
config.pad_token_id = 0 |
|
model = ModelWithHead(config) |
|
input_ids = torch.tensor([[432, 345, 232, 328, 740, 140, 1695, 69, 6078, 0, 0]]) |
|
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None) |
|
self.assertIn("We strongly recommend passing in an `attention_mask`", cl.out) |
|
|
|
with self.subTest("Ensure that the warning is shown at most once."): |
|
logger.warning_once.cache_clear() |
|
with LoggingLevel(logging.WARNING): |
|
with CaptureLogger(logger) as cl: |
|
config = PretrainedConfig() |
|
config.pad_token_id = 0 |
|
model = ModelWithHead(config) |
|
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 0, 0]]) |
|
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None) |
|
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None) |
|
self.assertEqual(cl.out.count("We strongly recommend passing in an `attention_mask`"), 1) |
|
|
|
with self.subTest("Ensure a different warning is shown when the pad_token_id is equal to the bos_token_id."): |
|
logger.warning_once.cache_clear() |
|
with LoggingLevel(logging.WARNING): |
|
with CaptureLogger(logger) as cl: |
|
config = PretrainedConfig() |
|
config.pad_token_id = 0 |
|
config.bos_token_id = config.pad_token_id |
|
model = ModelWithHead(config) |
|
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 0, 0]]) |
|
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None) |
|
self.assertIn("You may ignore this warning if your `pad_token_id`", cl.out) |
|
|
|
if not is_torchdynamo_available(): |
|
return |
|
with self.subTest("Ensure that the warning code is skipped when compiling with torchdynamo."): |
|
logger.warning_once.cache_clear() |
|
from torch._dynamo import config, testing |
|
|
|
config = PretrainedConfig() |
|
config.pad_token_id = 0 |
|
model = ModelWithHead(config) |
|
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 432, 5232]]) |
|
|
|
def f(input_ids): |
|
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None) |
|
|
|
compile_counter = testing.CompileCounter() |
|
opt_fn = torch.compile(f, dynamic=True, backend=compile_counter) |
|
opt_fn(input_ids) |
|
self.assertEqual(compile_counter.frame_count, 0) |
|
|
|
@require_torch_accelerator |
|
@slow |
|
def test_pretrained_low_mem_new_config(self): |
|
|
|
model_ids = ["openai-community/gpt2"] |
|
|
|
for model_id in model_ids: |
|
model_config = AutoConfig.from_pretrained(pretrained_model_name_or_path=model_id) |
|
model_config.n_layer = 48 |
|
model_config.n_head = 25 |
|
model_config.n_embd = 1600 |
|
model = AutoModelForCausalLM.from_pretrained( |
|
pretrained_model_name_or_path=model_id, |
|
config=model_config, |
|
ignore_mismatched_sizes=True, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
) |
|
model_ref = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path=model_id) |
|
|
|
self.assertEqual(model.__class__.__name__, model_ref.__class__.__name__) |
|
|
|
def test_generation_config_is_loaded_with_model(self): |
|
|
|
|
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"joaogante/tiny-random-gpt2-with-generation-config", use_safetensors=False |
|
) |
|
self.assertEqual(model.generation_config.transformers_version, "foo") |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"joaogante/tiny-random-gpt2-with-generation-config", device_map="auto", use_safetensors=False |
|
) |
|
self.assertEqual(model.generation_config.transformers_version, "foo") |
|
|
|
@require_safetensors |
|
def test_safetensors_torch_from_torch(self): |
|
model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir, safe_serialization=True) |
|
new_model = BertModel.from_pretrained(tmp_dir) |
|
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
@require_safetensors |
|
@require_flax |
|
def test_safetensors_torch_from_flax(self): |
|
hub_model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") |
|
model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir, safe_serialization=True) |
|
new_model = BertModel.from_pretrained(tmp_dir) |
|
|
|
for p1, p2 in zip(hub_model.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
@require_tf |
|
@require_safetensors |
|
def test_safetensors_torch_from_tf(self): |
|
hub_model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") |
|
model = TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-tf-only") |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir, safe_serialization=True) |
|
new_model = BertModel.from_pretrained(tmp_dir) |
|
|
|
for p1, p2 in zip(hub_model.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
@require_safetensors |
|
def test_safetensors_torch_from_torch_sharded(self): |
|
model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir, safe_serialization=True, max_shard_size="100kB") |
|
new_model = BertModel.from_pretrained(tmp_dir) |
|
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
def test_modifying_model_config_causes_warning_saving_generation_config(self): |
|
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2") |
|
model.config.top_k = 1 |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
with self.assertLogs("transformers.modeling_utils", level="WARNING") as logs: |
|
model.save_pretrained(tmp_dir) |
|
self.assertEqual(len(logs.output), 1) |
|
self.assertIn("Your generation config was originally created from the model config", logs.output[0]) |
|
|
|
@require_safetensors |
|
def test_model_from_pretrained_from_mlx(self): |
|
from safetensors import safe_open |
|
|
|
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-mistral-mlx") |
|
self.assertIsNotNone(model) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir, safe_serialization=True) |
|
with safe_open(os.path.join(tmp_dir, "model.safetensors"), framework="pt") as f: |
|
metadata = f.metadata() |
|
self.assertEqual(metadata.get("format"), "pt") |
|
new_model = AutoModelForCausalLM.from_pretrained(tmp_dir) |
|
|
|
input_ids = torch.randint(100, 1000, (1, 10)) |
|
with torch.no_grad(): |
|
outputs = model(input_ids) |
|
outputs_from_saved = new_model(input_ids) |
|
self.assertTrue(torch.allclose(outputs_from_saved["logits"], outputs["logits"])) |
|
|
|
|
|
@slow |
|
@require_torch |
|
class ModelOnTheFlyConversionTester(unittest.TestCase): |
|
@classmethod |
|
def setUpClass(cls): |
|
cls.user = "huggingface-hub-ci" |
|
cls.token = os.getenv("HUGGINGFACE_PRODUCTION_USER_TOKEN", None) |
|
|
|
if cls.token is None: |
|
raise ValueError("Cannot run tests as secret isn't setup.") |
|
|
|
cls.api = HfApi(token=cls.token) |
|
|
|
def setUp(self) -> None: |
|
self.repo_name = f"{self.user}/test-model-on-the-fly-{uuid.uuid4()}" |
|
|
|
def tearDown(self) -> None: |
|
self.api.delete_repo(self.repo_name) |
|
|
|
def test_safetensors_on_the_fly_conversion(self): |
|
config = BertConfig( |
|
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 |
|
) |
|
initial_model = BertModel(config) |
|
|
|
initial_model.push_to_hub(self.repo_name, token=self.token, safe_serialization=False) |
|
converted_model = BertModel.from_pretrained(self.repo_name, use_safetensors=True) |
|
|
|
with self.subTest("Initial and converted models are equal"): |
|
for p1, p2 in zip(initial_model.parameters(), converted_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
with self.subTest("PR was open with the safetensors account"): |
|
discussions = self.api.get_repo_discussions(self.repo_name) |
|
discussion = next(discussions) |
|
self.assertEqual(discussion.author, "SFconvertbot") |
|
self.assertEqual(discussion.title, "Adding `safetensors` variant of this model") |
|
|
|
def test_safetensors_on_the_fly_conversion_private(self): |
|
config = BertConfig( |
|
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 |
|
) |
|
initial_model = BertModel(config) |
|
|
|
initial_model.push_to_hub(self.repo_name, token=self.token, safe_serialization=False, private=True) |
|
converted_model = BertModel.from_pretrained(self.repo_name, use_safetensors=True, token=self.token) |
|
|
|
with self.subTest("Initial and converted models are equal"): |
|
for p1, p2 in zip(initial_model.parameters(), converted_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
with self.subTest("PR was open with the safetensors account"): |
|
discussions = self.api.get_repo_discussions(self.repo_name, token=self.token) |
|
discussion = next(discussions) |
|
self.assertEqual(discussion.author, self.user) |
|
self.assertEqual(discussion.title, "Adding `safetensors` variant of this model") |
|
|
|
def test_safetensors_on_the_fly_conversion_gated(self): |
|
config = BertConfig( |
|
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 |
|
) |
|
initial_model = BertModel(config) |
|
|
|
initial_model.push_to_hub(self.repo_name, token=self.token, safe_serialization=False) |
|
headers = {"Authorization": f"Bearer {self.token}"} |
|
requests.put( |
|
f"https://huggingface.co./api/models/{self.repo_name}/settings", json={"gated": "auto"}, headers=headers |
|
) |
|
converted_model = BertModel.from_pretrained(self.repo_name, use_safetensors=True, token=self.token) |
|
|
|
with self.subTest("Initial and converted models are equal"): |
|
for p1, p2 in zip(initial_model.parameters(), converted_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
with self.subTest("PR was open with the safetensors account"): |
|
discussions = self.api.get_repo_discussions(self.repo_name) |
|
discussion = next(discussions) |
|
self.assertEqual(discussion.author, "SFconvertbot") |
|
self.assertEqual(discussion.title, "Adding `safetensors` variant of this model") |
|
|
|
def test_safetensors_on_the_fly_sharded_conversion(self): |
|
config = BertConfig( |
|
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 |
|
) |
|
initial_model = BertModel(config) |
|
|
|
initial_model.push_to_hub(self.repo_name, token=self.token, safe_serialization=False, max_shard_size="200kb") |
|
converted_model = BertModel.from_pretrained(self.repo_name, use_safetensors=True) |
|
|
|
with self.subTest("Initial and converted models are equal"): |
|
for p1, p2 in zip(initial_model.parameters(), converted_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
with self.subTest("PR was open with the safetensors account"): |
|
discussions = self.api.get_repo_discussions(self.repo_name) |
|
discussion = next(discussions) |
|
self.assertEqual(discussion.author, "SFconvertbot") |
|
self.assertEqual(discussion.title, "Adding `safetensors` variant of this model") |
|
|
|
def test_safetensors_on_the_fly_sharded_conversion_private(self): |
|
config = BertConfig( |
|
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 |
|
) |
|
initial_model = BertModel(config) |
|
|
|
initial_model.push_to_hub( |
|
self.repo_name, token=self.token, safe_serialization=False, max_shard_size="200kb", private=True |
|
) |
|
converted_model = BertModel.from_pretrained(self.repo_name, use_safetensors=True, token=self.token) |
|
|
|
with self.subTest("Initial and converted models are equal"): |
|
for p1, p2 in zip(initial_model.parameters(), converted_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
with self.subTest("PR was open with the safetensors account"): |
|
discussions = self.api.get_repo_discussions(self.repo_name) |
|
discussion = next(discussions) |
|
self.assertEqual(discussion.author, self.user) |
|
self.assertEqual(discussion.title, "Adding `safetensors` variant of this model") |
|
|
|
def test_safetensors_on_the_fly_sharded_conversion_gated(self): |
|
config = BertConfig( |
|
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 |
|
) |
|
initial_model = BertModel(config) |
|
|
|
initial_model.push_to_hub(self.repo_name, token=self.token, max_shard_size="200kb", safe_serialization=False) |
|
headers = {"Authorization": f"Bearer {self.token}"} |
|
requests.put( |
|
f"https://huggingface.co./api/models/{self.repo_name}/settings", json={"gated": "auto"}, headers=headers |
|
) |
|
converted_model = BertModel.from_pretrained(self.repo_name, use_safetensors=True, token=self.token) |
|
|
|
with self.subTest("Initial and converted models are equal"): |
|
for p1, p2 in zip(initial_model.parameters(), converted_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
with self.subTest("PR was open with the safetensors account"): |
|
discussions = self.api.get_repo_discussions(self.repo_name) |
|
discussion = next(discussions) |
|
self.assertEqual(discussion.author, "SFconvertbot") |
|
self.assertEqual(discussion.title, "Adding `safetensors` variant of this model") |
|
|
|
@unittest.skip("Edge case, should work once the Space is updated`") |
|
def test_safetensors_on_the_fly_wrong_user_opened_pr(self): |
|
config = BertConfig( |
|
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 |
|
) |
|
initial_model = BertModel(config) |
|
|
|
initial_model.push_to_hub(self.repo_name, token=self.token, safe_serialization=False, private=True) |
|
BertModel.from_pretrained(self.repo_name, use_safetensors=True, token=self.token) |
|
|
|
|
|
with self.subTest("PR was open with the safetensors account"): |
|
discussions = self.api.get_repo_discussions(self.repo_name) |
|
discussion = next(discussions) |
|
self.assertEqual(discussion.author, self.user) |
|
self.assertEqual(discussion.title, "Adding `safetensors` variant of this model") |
|
|
|
|
|
self.api.update_repo_visibility(self.repo_name, private=False) |
|
|
|
|
|
BertModel.from_pretrained(self.repo_name, use_safetensors=True, token=self.token) |
|
|
|
with self.subTest("PR was open with the safetensors account"): |
|
discussions = self.api.get_repo_discussions(self.repo_name) |
|
|
|
bot_opened_pr = None |
|
bot_opened_pr_title = None |
|
|
|
for discussion in discussions: |
|
if discussion.author == "SFconvertbot": |
|
bot_opened_pr = True |
|
bot_opened_pr_title = discussion.title |
|
|
|
self.assertTrue(bot_opened_pr) |
|
self.assertEqual(bot_opened_pr_title, "Adding `safetensors` variant of this model") |
|
|
|
def test_safetensors_on_the_fly_specific_revision(self): |
|
config = BertConfig( |
|
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 |
|
) |
|
initial_model = BertModel(config) |
|
|
|
|
|
initial_model.push_to_hub(self.repo_name, token=self.token, safe_serialization=False) |
|
|
|
|
|
initial_model.push_to_hub(self.repo_name, token=self.token, safe_serialization=False, revision="new-branch") |
|
|
|
|
|
with self.assertRaises(EnvironmentError): |
|
BertModel.from_pretrained(self.repo_name, use_safetensors=True, token=self.token, revision="new-branch") |
|
|
|
def test_absence_of_safetensors_triggers_conversion(self): |
|
config = BertConfig( |
|
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 |
|
) |
|
initial_model = BertModel(config) |
|
|
|
|
|
initial_model.push_to_hub(self.repo_name, token=self.token, safe_serialization=False) |
|
|
|
|
|
BertModel.from_pretrained(self.repo_name, token=self.token) |
|
|
|
for thread in threading.enumerate(): |
|
if thread.name == "Thread-autoconversion": |
|
thread.join(timeout=10) |
|
|
|
with self.subTest("PR was open with the safetensors account"): |
|
discussions = self.api.get_repo_discussions(self.repo_name) |
|
|
|
bot_opened_pr = None |
|
bot_opened_pr_title = None |
|
|
|
for discussion in discussions: |
|
if discussion.author == "SFconvertbot": |
|
bot_opened_pr = True |
|
bot_opened_pr_title = discussion.title |
|
|
|
self.assertTrue(bot_opened_pr) |
|
self.assertEqual(bot_opened_pr_title, "Adding `safetensors` variant of this model") |
|
|
|
@mock.patch("transformers.safetensors_conversion.spawn_conversion") |
|
def test_absence_of_safetensors_triggers_conversion_failed(self, spawn_conversion_mock): |
|
spawn_conversion_mock.side_effect = HTTPError() |
|
|
|
config = BertConfig( |
|
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 |
|
) |
|
initial_model = BertModel(config) |
|
|
|
|
|
initial_model.push_to_hub(self.repo_name, token=self.token, safe_serialization=False) |
|
|
|
|
|
BertModel.from_pretrained(self.repo_name, token=self.token) |
|
|
|
|
|
@require_torch |
|
@is_staging_test |
|
class ModelPushToHubTester(unittest.TestCase): |
|
@classmethod |
|
def setUpClass(cls): |
|
cls._token = TOKEN |
|
HfFolder.save_token(TOKEN) |
|
|
|
@classmethod |
|
def tearDownClass(cls): |
|
try: |
|
delete_repo(token=cls._token, repo_id="test-model") |
|
except HTTPError: |
|
pass |
|
|
|
try: |
|
delete_repo(token=cls._token, repo_id="valid_org/test-model-org") |
|
except HTTPError: |
|
pass |
|
|
|
try: |
|
delete_repo(token=cls._token, repo_id="test-dynamic-model") |
|
except HTTPError: |
|
pass |
|
|
|
try: |
|
delete_repo(token=cls._token, repo_id="test-dynamic-model-with-tags") |
|
except HTTPError: |
|
pass |
|
|
|
@unittest.skip("This test is flaky") |
|
def test_push_to_hub(self): |
|
config = BertConfig( |
|
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 |
|
) |
|
model = BertModel(config) |
|
model.push_to_hub("test-model", token=self._token) |
|
|
|
new_model = BertModel.from_pretrained(f"{USER}/test-model") |
|
for p1, p2 in zip(model.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
|
|
delete_repo(token=self._token, repo_id="test-model") |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir, repo_id="test-model", push_to_hub=True, token=self._token) |
|
|
|
new_model = BertModel.from_pretrained(f"{USER}/test-model") |
|
for p1, p2 in zip(model.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
def test_push_to_hub_with_description(self): |
|
config = BertConfig( |
|
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 |
|
) |
|
model = BertModel(config) |
|
COMMIT_DESCRIPTION = """ |
|
The commit description supports markdown synthax see: |
|
```python |
|
>>> form transformers import AutoConfig |
|
>>> config = AutoConfig.from_pretrained("google-bert/bert-base-uncased") |
|
``` |
|
""" |
|
commit_details = model.push_to_hub( |
|
"test-model", use_auth_token=self._token, create_pr=True, commit_description=COMMIT_DESCRIPTION |
|
) |
|
self.assertEqual(commit_details.commit_description, COMMIT_DESCRIPTION) |
|
|
|
@unittest.skip("This test is flaky") |
|
def test_push_to_hub_in_organization(self): |
|
config = BertConfig( |
|
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 |
|
) |
|
model = BertModel(config) |
|
model.push_to_hub("valid_org/test-model-org", token=self._token) |
|
|
|
new_model = BertModel.from_pretrained("valid_org/test-model-org") |
|
for p1, p2 in zip(model.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
|
|
delete_repo(token=self._token, repo_id="valid_org/test-model-org") |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir, push_to_hub=True, token=self._token, repo_id="valid_org/test-model-org") |
|
|
|
new_model = BertModel.from_pretrained("valid_org/test-model-org") |
|
for p1, p2 in zip(model.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
def test_push_to_hub_dynamic_model(self): |
|
CustomConfig.register_for_auto_class() |
|
CustomModel.register_for_auto_class() |
|
|
|
config = CustomConfig(hidden_size=32) |
|
model = CustomModel(config) |
|
|
|
model.push_to_hub("test-dynamic-model", token=self._token) |
|
|
|
self.assertDictEqual( |
|
config.auto_map, |
|
{"AutoConfig": "custom_configuration.CustomConfig", "AutoModel": "custom_modeling.CustomModel"}, |
|
) |
|
|
|
new_model = AutoModel.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True) |
|
|
|
self.assertEqual(new_model.__class__.__name__, "CustomModel") |
|
for p1, p2 in zip(model.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True) |
|
new_model = AutoModel.from_config(config, trust_remote_code=True) |
|
self.assertEqual(new_model.__class__.__name__, "CustomModel") |
|
|
|
def test_push_to_hub_with_tags(self): |
|
from huggingface_hub import ModelCard |
|
|
|
new_tags = ["tag-1", "tag-2"] |
|
|
|
CustomConfig.register_for_auto_class() |
|
CustomModel.register_for_auto_class() |
|
|
|
config = CustomConfig(hidden_size=32) |
|
model = CustomModel(config) |
|
|
|
self.assertTrue(model.model_tags is None) |
|
|
|
model.add_model_tags(new_tags) |
|
|
|
self.assertTrue(model.model_tags == new_tags) |
|
|
|
model.push_to_hub("test-dynamic-model-with-tags", token=self._token) |
|
|
|
loaded_model_card = ModelCard.load(f"{USER}/test-dynamic-model-with-tags") |
|
self.assertEqual(loaded_model_card.data.tags, new_tags) |
|
|
|
|
|
@require_torch |
|
class AttentionMaskTester(unittest.TestCase): |
|
def check_non_causal(self, bsz, q_len, kv_len, mask_2d, mask_4d): |
|
mask_indices = (mask_2d != 1)[:, None].broadcast_to((bsz, q_len, kv_len)) |
|
mask_4d_values = mask_4d[:, 0][mask_indices] |
|
is_inf = mask_4d_values == -float("inf") |
|
is_min = mask_4d_values == torch.finfo(mask_4d.dtype).min |
|
assert torch.logical_or(is_inf, is_min).all() |
|
|
|
def check_to_4d(self, mask_converter, q_len, kv_len, additional_mask=None, bsz=3): |
|
mask_2d = torch.ones((bsz, kv_len), device=torch_device, dtype=torch.long) |
|
|
|
if additional_mask is not None: |
|
for bsz_idx, seq_idx in additional_mask: |
|
mask_2d[bsz_idx, seq_idx] = 0 |
|
|
|
mask_4d = mask_converter.to_4d(mask_2d, query_length=q_len, key_value_length=kv_len, dtype=torch.float32) |
|
|
|
assert mask_4d.shape == (bsz, 1, q_len, kv_len) |
|
|
|
|
|
assert mask_4d.min() != float("-inf") |
|
|
|
context = mask_converter.sliding_window |
|
if mask_converter.is_causal and context is None: |
|
|
|
num_tokens_masked = bsz * (q_len * (q_len - 1) // 2) |
|
|
|
if 0 not in mask_2d: |
|
assert (mask_4d != 0).sum().cpu().item() == num_tokens_masked |
|
if 0 in mask_2d: |
|
|
|
assert (mask_4d != 0).sum().cpu().item() >= num_tokens_masked |
|
self.check_non_causal(bsz, q_len, kv_len, mask_2d, mask_4d) |
|
elif not mask_converter.is_causal and context is None: |
|
if 0 not in mask_2d: |
|
assert (mask_4d != 0).sum().cpu().item() == 0 |
|
if 0 in mask_2d: |
|
self.check_non_causal(bsz, q_len, kv_len, mask_2d, mask_4d) |
|
elif mask_converter.is_causal and context is not None: |
|
|
|
num_tokens_masked = (q_len * (q_len - 1) // 2) + self.compute_num_context_mask(kv_len, context, q_len) |
|
num_tokens_masked = bsz * num_tokens_masked |
|
|
|
if 0 not in mask_2d: |
|
assert (mask_4d != 0).sum().cpu().item() == num_tokens_masked |
|
if 0 in mask_2d: |
|
|
|
assert (mask_4d != 0).sum().cpu().item() >= num_tokens_masked |
|
self.check_non_causal(bsz, q_len, kv_len, mask_2d, mask_4d) |
|
|
|
def check_to_causal(self, mask_converter, q_len, kv_len, bsz=3): |
|
mask_4d = mask_converter.to_causal_4d( |
|
bsz, query_length=q_len, key_value_length=kv_len, device=torch_device, dtype=torch.float32 |
|
) |
|
|
|
if q_len == 1 and mask_converter.sliding_window is None: |
|
|
|
assert mask_4d is None |
|
return |
|
|
|
context = mask_converter.sliding_window |
|
if mask_converter.is_causal and context is None: |
|
|
|
num_tokens_masked = bsz * (q_len * (q_len - 1) // 2) |
|
|
|
assert (mask_4d != 0).sum().cpu().item() == num_tokens_masked |
|
elif not mask_converter.is_causal and context is None: |
|
assert (mask_4d != 0).sum().cpu().item() == 0 |
|
elif mask_converter.is_causal and context is not None: |
|
|
|
num_tokens_masked = (q_len * (q_len - 1) // 2) + self.compute_num_context_mask(kv_len, context, q_len) |
|
num_tokens_masked = bsz * num_tokens_masked |
|
|
|
assert (mask_4d != 0).sum().cpu().item() == num_tokens_masked |
|
|
|
def compute_num_context_mask(self, kv_len, context, q_len): |
|
|
|
|
|
c_mask_len = kv_len - context - 1 |
|
num_mask_triangle = c_mask_len * (c_mask_len + 1) // 2 |
|
cut_mask_len = max(c_mask_len - q_len, 0) |
|
num_cut_mask = cut_mask_len * (cut_mask_len + 1) // 2 |
|
return num_mask_triangle - num_cut_mask |
|
|
|
def test_2d_to_4d_causal(self): |
|
mask_converter = AttentionMaskConverter(is_causal=True) |
|
|
|
|
|
self.check_to_4d(mask_converter, q_len=1, kv_len=7) |
|
|
|
self.check_to_4d(mask_converter, q_len=3, kv_len=7) |
|
|
|
self.check_to_4d(mask_converter, q_len=7, kv_len=7) |
|
|
|
|
|
self.check_to_4d(mask_converter, q_len=1, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)]) |
|
self.check_to_4d(mask_converter, q_len=3, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)]) |
|
self.check_to_4d(mask_converter, q_len=7, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)]) |
|
|
|
|
|
self.check_to_4d(mask_converter, q_len=7, kv_len=7, additional_mask=[(0, 0), (1, 0), (1, 1)]) |
|
|
|
def test_2d_to_4d(self): |
|
mask_converter = AttentionMaskConverter(is_causal=False) |
|
|
|
|
|
self.check_to_4d(mask_converter, q_len=7, kv_len=7) |
|
|
|
|
|
self.check_to_4d(mask_converter, q_len=7, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)]) |
|
|
|
def test_2d_to_4d_causal_sliding(self): |
|
mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=5) |
|
|
|
|
|
self.check_to_4d(mask_converter, q_len=1, kv_len=7) |
|
|
|
self.check_to_4d(mask_converter, q_len=3, kv_len=7) |
|
|
|
self.check_to_4d(mask_converter, q_len=7, kv_len=7) |
|
|
|
|
|
self.check_to_4d(mask_converter, q_len=1, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)]) |
|
self.check_to_4d(mask_converter, q_len=3, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)]) |
|
self.check_to_4d(mask_converter, q_len=7, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)]) |
|
|
|
def test_causal_mask(self): |
|
mask_converter = AttentionMaskConverter(is_causal=True) |
|
|
|
|
|
self.check_to_causal(mask_converter, q_len=1, kv_len=7) |
|
|
|
self.check_to_causal(mask_converter, q_len=3, kv_len=7) |
|
|
|
self.check_to_causal(mask_converter, q_len=7, kv_len=7) |
|
|
|
def test_causal_mask_sliding(self): |
|
mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=3) |
|
|
|
|
|
self.check_to_causal(mask_converter, q_len=1, kv_len=7) |
|
|
|
self.check_to_causal(mask_converter, q_len=3, kv_len=7) |
|
|
|
self.check_to_causal(mask_converter, q_len=7, kv_len=7) |
|
|
|
def test_torch_compile_fullgraph(self): |
|
model = Prepare4dCausalAttentionMaskModel() |
|
|
|
inputs_embeds = torch.rand([1, 3, 32]) |
|
res_non_compiled = model(inputs_embeds) |
|
|
|
compiled_model = torch.compile(model, fullgraph=True) |
|
|
|
res_compiled = compiled_model(inputs_embeds) |
|
|
|
self.assertTrue(torch.equal(res_non_compiled, res_compiled)) |
|
|
|
model = Create4dCausalAttentionMaskModel() |
|
|
|
inputs_embeds = torch.rand(2, 4, 16) |
|
res_non_compiled = model(inputs_embeds) |
|
|
|
compiled_model = torch.compile(model, fullgraph=True) |
|
res_compiled = compiled_model(inputs_embeds) |
|
|
|
self.assertTrue(torch.equal(res_non_compiled, res_compiled)) |
|
|
|
model = Prepare4dAttentionMaskModel() |
|
|
|
mask = torch.ones(2, 4) |
|
mask[0, :2] = 0 |
|
inputs_embeds = torch.rand(2, 4, 16) |
|
|
|
res_non_compiled = model(mask, inputs_embeds) |
|
|
|
compiled_model = torch.compile(model, fullgraph=True) |
|
res_compiled = compiled_model(mask, inputs_embeds) |
|
|
|
self.assertTrue(torch.equal(res_non_compiled, res_compiled)) |
|
|
|
@require_torch |
|
@slow |
|
def test_unmask_unattended_left_padding(self): |
|
attention_mask = torch.Tensor([[0, 0, 1], [1, 1, 1], [0, 1, 1]]).to(torch.int64) |
|
|
|
expanded_mask = torch.Tensor( |
|
[ |
|
[[[0, 0, 0], [0, 0, 0], [0, 0, 1]]], |
|
[[[1, 0, 0], [1, 1, 0], [1, 1, 1]]], |
|
[[[0, 0, 0], [0, 1, 0], [0, 1, 1]]], |
|
] |
|
).to(torch.int64) |
|
|
|
reference_output = torch.Tensor( |
|
[ |
|
[[[1, 1, 1], [1, 1, 1], [0, 0, 1]]], |
|
[[[1, 0, 0], [1, 1, 0], [1, 1, 1]]], |
|
[[[1, 1, 1], [0, 1, 0], [0, 1, 1]]], |
|
] |
|
).to(torch.int64) |
|
|
|
result = AttentionMaskConverter._unmask_unattended(expanded_mask, attention_mask, unmasked_value=1) |
|
|
|
self.assertTrue(torch.equal(result, reference_output)) |
|
|
|
attention_mask = torch.Tensor([[0, 0, 1, 1, 1], [1, 1, 1, 1, 1], [0, 1, 1, 1, 1]]).to(torch.int64) |
|
|
|
attn_mask_converter = AttentionMaskConverter(is_causal=True) |
|
past_key_values_length = 0 |
|
key_value_length = attention_mask.shape[-1] + past_key_values_length |
|
|
|
expanded_mask = attn_mask_converter.to_4d( |
|
attention_mask, attention_mask.shape[-1], key_value_length=key_value_length, dtype=torch.float32 |
|
) |
|
|
|
result = AttentionMaskConverter._unmask_unattended(expanded_mask, attention_mask, unmasked_value=0) |
|
min_inf = torch.finfo(torch.float32).min |
|
reference_output = torch.Tensor( |
|
[ |
|
[ |
|
[ |
|
[0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0], |
|
[min_inf, min_inf, 0, min_inf, min_inf], |
|
[min_inf, min_inf, 0, 0, min_inf], |
|
[min_inf, min_inf, 0, 0, 0], |
|
] |
|
], |
|
[ |
|
[ |
|
[0, min_inf, min_inf, min_inf, min_inf], |
|
[0, 0, min_inf, min_inf, min_inf], |
|
[0, 0, 0, min_inf, min_inf], |
|
[0, 0, 0, 0, min_inf], |
|
[0, 0, 0, 0, 0], |
|
] |
|
], |
|
[ |
|
[ |
|
[0, 0, 0, 0, 0], |
|
[min_inf, 0, min_inf, min_inf, min_inf], |
|
[min_inf, 0, 0, min_inf, min_inf], |
|
[min_inf, 0, 0, 0, min_inf], |
|
[min_inf, 0, 0, 0, 0], |
|
] |
|
], |
|
] |
|
) |
|
|
|
self.assertTrue(torch.equal(reference_output, result)) |
|
|
|
@require_torch |
|
@slow |
|
def test_unmask_unattended_right_padding(self): |
|
attention_mask = torch.Tensor([[1, 1, 1, 0], [1, 1, 1, 1], [1, 1, 0, 0]]).to(torch.int64) |
|
|
|
attn_mask_converter = AttentionMaskConverter(is_causal=True) |
|
past_key_values_length = 0 |
|
key_value_length = attention_mask.shape[-1] + past_key_values_length |
|
|
|
expanded_mask = attn_mask_converter.to_4d( |
|
attention_mask, attention_mask.shape[-1], key_value_length=key_value_length, dtype=torch.float32 |
|
) |
|
|
|
result = AttentionMaskConverter._unmask_unattended(expanded_mask, attention_mask, unmasked_value=0) |
|
|
|
self.assertTrue(torch.equal(expanded_mask, result)) |
|
|
|
@require_torch |
|
@slow |
|
def test_unmask_unattended_random_mask(self): |
|
attention_mask = torch.Tensor([[1, 0, 1, 0], [1, 0, 1, 1], [1, 1, 0, 1]]).to(torch.int64) |
|
|
|
attn_mask_converter = AttentionMaskConverter(is_causal=True) |
|
past_key_values_length = 0 |
|
key_value_length = attention_mask.shape[-1] + past_key_values_length |
|
|
|
expanded_mask = attn_mask_converter.to_4d( |
|
attention_mask, attention_mask.shape[-1], key_value_length=key_value_length, dtype=torch.float32 |
|
) |
|
|
|
result = AttentionMaskConverter._unmask_unattended(expanded_mask, attention_mask, unmasked_value=0) |
|
|
|
self.assertTrue(torch.equal(expanded_mask, result)) |
|
|
|
|
|
@require_torch |
|
class TestAttentionImplementation(unittest.TestCase): |
|
def test_error_no_sdpa_available(self): |
|
with self.assertRaises(ValueError) as cm: |
|
_ = AutoModel.from_pretrained("hf-tiny-model-private/tiny-random-MCTCTModel", attn_implementation="sdpa") |
|
|
|
self.assertTrue( |
|
"does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention" |
|
in str(cm.exception) |
|
) |
|
|
|
_ = AutoModel.from_pretrained("hf-tiny-model-private/tiny-random-MCTCTModel") |
|
|
|
def test_error_no_flash_available(self): |
|
with self.assertRaises(ValueError) as cm: |
|
_ = AutoModel.from_pretrained( |
|
"hf-tiny-model-private/tiny-random-MCTCTModel", attn_implementation="flash_attention_2" |
|
) |
|
|
|
self.assertTrue("does not support Flash Attention 2.0" in str(cm.exception)) |
|
|
|
def test_error_no_flash_available_with_config(self): |
|
with self.assertRaises(ValueError) as cm: |
|
config = AutoConfig.from_pretrained("hf-tiny-model-private/tiny-random-MCTCTModel") |
|
|
|
_ = AutoModel.from_pretrained( |
|
"hf-tiny-model-private/tiny-random-MCTCTModel", config=config, attn_implementation="flash_attention_2" |
|
) |
|
|
|
self.assertTrue("does not support Flash Attention 2.0" in str(cm.exception)) |
|
|
|
def test_error_wrong_attn_implementation(self): |
|
with self.assertRaises(ValueError) as cm: |
|
_ = AutoModel.from_pretrained("hf-tiny-model-private/tiny-random-MCTCTModel", attn_implementation="foo") |
|
|
|
self.assertTrue('The only possible arguments are `attn_implementation="eager"' in str(cm.exception)) |
|
|
|
def test_not_available_flash(self): |
|
if is_flash_attn_2_available(): |
|
self.skipTest("Please uninstall flash-attn package to run test_not_available_flash") |
|
|
|
with self.assertRaises(ImportError) as cm: |
|
_ = AutoModel.from_pretrained( |
|
"hf-internal-testing/tiny-random-GPTBigCodeModel", attn_implementation="flash_attention_2" |
|
) |
|
|
|
self.assertTrue("the package flash_attn seems to be not installed" in str(cm.exception)) |
|
|
|
def test_not_available_flash_with_config(self): |
|
if is_flash_attn_2_available(): |
|
self.skipTest("Please uninstall flash-attn package to run test_not_available_flash") |
|
|
|
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-GPTBigCodeModel") |
|
|
|
with self.assertRaises(ImportError) as cm: |
|
_ = AutoModel.from_pretrained( |
|
"hf-internal-testing/tiny-random-GPTBigCodeModel", |
|
config=config, |
|
attn_implementation="flash_attention_2", |
|
) |
|
|
|
self.assertTrue("the package flash_attn seems to be not installed" in str(cm.exception)) |
|
|
|
def test_not_available_sdpa(self): |
|
if is_torch_sdpa_available(): |
|
self.skipTest("This test requires torch<=2.0") |
|
|
|
with self.assertRaises(ImportError) as cm: |
|
_ = AutoModel.from_pretrained( |
|
"hf-internal-testing/tiny-random-GPTBigCodeModel", attn_implementation="sdpa" |
|
) |
|
|
|
self.assertTrue("PyTorch SDPA requirements in Transformers are not met" in str(cm.exception)) |
|
|
|
|
|
@require_torch_gpu |
|
class Mask4DTestBase(unittest.TestCase): |
|
def tearDown(self): |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_test_data(self): |
|
texts = ["the cat sat", "the cat had", "the cat is"] |
|
encoded = [self.tokenizer.encode(t) for t in texts] |
|
input_0 = torch.tensor(encoded, device=torch_device) |
|
|
|
|
|
|
|
|
|
position_ids_0 = torch.tensor([[0, 1, 2, 3]] * 3, device=torch_device, dtype=torch.int64) |
|
|
|
|
|
input_1 = torch.cat([input_0[0][:-1], input_0[:, -1]]).unsqueeze(0) |
|
|
|
|
|
|
|
mask_1 = torch.tensor( |
|
[ |
|
[ |
|
[ |
|
[1, 0, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[1, 1, 1, 0, 0, 0], |
|
[1, 1, 1, 1, 0, 0], |
|
[1, 1, 1, 0, 1, 0], |
|
[1, 1, 1, 0, 0, 1], |
|
] |
|
] |
|
], |
|
device="cuda:0", |
|
dtype=torch.int64, |
|
) |
|
|
|
|
|
position_ids_1 = torch.tensor([[0, 1, 2, 3, 3, 3]], device=torch_device, dtype=torch.int64) |
|
|
|
return input_0, position_ids_0, input_1, mask_1, position_ids_1 |
|
|
|
|
|
@require_torch_gpu |
|
class Mask4DTestFP32(Mask4DTestBase): |
|
def setUp(self): |
|
model_name = "JackFram/llama-68m" |
|
self.model_dtype = torch.float32 |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
self.model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=self.model_dtype).to(torch_device) |
|
|
|
def test_attention(self): |
|
"""comparing outputs of attention layer""" |
|
|
|
input_0, position_ids_0, input_1, mask_1, position_ids_1 = self.get_test_data() |
|
causal_mask_1 = (1 - mask_1).to(self.model_dtype) * torch.finfo(self.model_dtype).min |
|
|
|
hid_0 = self.model.model.embed_tokens(input_0) |
|
outs_0 = self.model.model.layers[0].self_attn.forward(hid_0, position_ids=position_ids_0)[0] |
|
|
|
|
|
hid_1 = self.model.model.embed_tokens(input_1) |
|
outs_1 = self.model.model.layers[0].self_attn.forward( |
|
hid_1, attention_mask=causal_mask_1, position_ids=position_ids_1 |
|
)[0] |
|
|
|
|
|
outs_0_last_tokens = outs_0[:, -1, :] |
|
outs_1_last_tokens = outs_1[0, -3:, :] |
|
torch.testing.assert_close(outs_0_last_tokens, outs_1_last_tokens) |
|
|
|
def test_causal_model_logits(self): |
|
"""comparing logits outputs of whole inner model""" |
|
|
|
input_0, position_ids_0, input_1, mask_1, position_ids_1 = self.get_test_data() |
|
|
|
logits_0 = self.model.forward(input_0, position_ids=position_ids_0).logits |
|
logits_1 = self.model.forward(input_1, attention_mask=mask_1.bool(), position_ids=position_ids_1).logits |
|
|
|
logits_0_last_tokens = logits_0[:, -1, :] |
|
logits_1_last_tokens = logits_1[0, -3:, :] |
|
torch.testing.assert_close(logits_0_last_tokens, logits_1_last_tokens) |
|
|
|
|
|
@require_torch_gpu |
|
class Mask4DTestFP16(Mask4DTestBase): |
|
test_attention = Mask4DTestFP32.test_attention |
|
|
|
def setUp(self): |
|
model_name = "JackFram/llama-68m" |
|
self.model_dtype = torch.float16 |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
self.model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=self.model_dtype).to(torch_device) |
|
|
|
def test_causal_model_logits(self): |
|
"""comparing logits outputs of whole inner model""" |
|
|
|
input_0, position_ids_0, input_1, mask_1, position_ids_1 = self.get_test_data() |
|
|
|
logits_0 = self.model.forward(input_0, position_ids=position_ids_0).logits |
|
logits_1 = self.model.forward(input_1, attention_mask=mask_1.bool(), position_ids=position_ids_1).logits |
|
|
|
logits_0_last_tokens = logits_0[:, -1, :] |
|
logits_1_last_tokens = logits_1[0, -3:, :] |
|
|
|
indices_0 = logits_0_last_tokens.sort(descending=True).indices |
|
indices_1 = logits_1_last_tokens.sort(descending=True).indices |
|
|
|
|
|
torch.testing.assert_close(logits_0_last_tokens, logits_1_last_tokens, atol=0.02, rtol=0.001) |
|
|
|
|
|
for token_ids_0, token_ids_1 in zip(indices_0, indices_1): |
|
self.assertTrue(torch.equal(token_ids_0[:128], token_ids_1[:128])) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class Mask4DTestHard(unittest.TestCase): |
|
def tearDown(self): |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def setUp(self): |
|
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" |
|
self.model_dtype = torch.float32 |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
self.model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=self.model_dtype).to(torch_device) |
|
|
|
def get_test_data(self): |
|
template = "my favorite {}" |
|
items = ("pet is a", "artist plays a", "name is L") |
|
|
|
batch_0 = [template.format(x) for x in items] |
|
batch_1 = template.format(" ".join(items)) |
|
|
|
input_0 = self.tokenizer(batch_0, return_tensors="pt").input_ids.to(torch_device) |
|
input_1 = self.tokenizer(batch_1, return_tensors="pt").input_ids.to(torch_device) |
|
|
|
mask_1 = torch.tensor( |
|
[ |
|
[ |
|
[ |
|
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], |
|
[1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], |
|
[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], |
|
[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], |
|
[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], |
|
[1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0], |
|
[1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0], |
|
[1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0], |
|
[1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0], |
|
[1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0], |
|
[1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1], |
|
] |
|
] |
|
], |
|
device=torch_device, |
|
dtype=torch.int64, |
|
) |
|
|
|
position_ids_0 = torch.arange(input_0.shape[1]).tile(input_0.shape[0], 1).to(torch_device) |
|
|
|
position_ids_1 = (mask_1.sum(dim=-1) - 1).reshape(1, -1) |
|
|
|
return input_0, position_ids_0, input_1, mask_1, position_ids_1 |
|
|
|
def test_stacked_causal_mask(self): |
|
|
|
input_0, position_ids_0, input_1, mask_1, position_ids_1 = self.get_test_data() |
|
|
|
|
|
logits_0 = self.model.forward(input_0, position_ids=position_ids_0).logits |
|
logits_0_last = logits_0[:, -1, :] |
|
decoded_0 = [self.tokenizer.decode(t) for t in logits_0_last.argmax(dim=-1)] |
|
|
|
|
|
logits_1 = self.model.forward(input_1, attention_mask=mask_1.bool(), position_ids=position_ids_1).logits |
|
logits_1_last = logits_1[0, torch.where(position_ids_1 == position_ids_1.max())[1], :] |
|
decoded_1 = [self.tokenizer.decode(t) for t in logits_1_last.argmax(dim=-1)] |
|
|
|
self.assertEqual(decoded_0, decoded_1) |
|
|
|
def test_partial_stacked_causal_mask(self): |
|
|
|
|
|
|
|
|
|
input_0, position_ids_0, input_1, mask_1, position_ids_1 = self.get_test_data() |
|
|
|
|
|
logits_0 = self.model.forward(input_0, position_ids=position_ids_0).logits |
|
logits_0_last = logits_0[:, -1, :] |
|
decoded_0 = [self.tokenizer.decode(t) for t in logits_0_last.argmax(dim=-1)] |
|
|
|
|
|
part_a = 3 |
|
|
|
input_1a = input_1[:, :part_a] |
|
position_ids_1a = position_ids_1[:, :part_a] |
|
mask_1a = mask_1[:, :, :part_a, :part_a] |
|
|
|
outs_1a = self.model.forward(input_1a, attention_mask=mask_1a.bool(), position_ids=position_ids_1a) |
|
past_key_values_a = outs_1a["past_key_values"] |
|
|
|
input_1b = input_1[:, part_a:] |
|
position_ids_1b = position_ids_1[:, part_a:] |
|
mask_1b = mask_1[:, :, part_a:, :] |
|
|
|
outs_1b = self.model.forward( |
|
input_1b, attention_mask=mask_1b.bool(), position_ids=position_ids_1b, past_key_values=past_key_values_a |
|
) |
|
|
|
decoded_1b = [ |
|
self.tokenizer.decode(t) |
|
for t in outs_1b.logits.argmax(-1)[0, torch.where(position_ids_1 == position_ids_1.max())[1] - part_a] |
|
] |
|
|
|
self.assertEqual(decoded_0, decoded_1b) |
|
|
|
|
|
@require_torch |
|
class TestTensorSharing(TestCasePlus): |
|
def test_disjoint(self): |
|
main = torch.zeros(10) |
|
a = main[:5] |
|
b = main[5:] |
|
state_dict = {"a": a, "b": b} |
|
|
|
shared_names, disjoint_names = _find_disjoint([{"a", "b"}], state_dict) |
|
self.assertEqual(shared_names, []) |
|
self.assertEqual(disjoint_names, ["a", "b"]) |
|
|
|
a = main[::2] |
|
b = main[1::2] |
|
state_dict = {"a": a, "b": b} |
|
|
|
shared_names, disjoint_names = _find_disjoint([{"a", "b"}], state_dict) |
|
self.assertEqual(shared_names, [{"a", "b"}]) |
|
self.assertEqual(disjoint_names, []) |
|
|
|
def test_identical(self): |
|
a = torch.zeros(10) |
|
b = a |
|
state_dict = {"a": a, "b": b} |
|
|
|
shared_names, identical_names = _find_identical([{"a", "b"}], state_dict) |
|
self.assertEqual(shared_names, []) |
|
self.assertEqual(identical_names, [{"a", "b"}]) |
|
|
|
b = a[:5] |
|
state_dict = {"a": a, "b": b} |
|
|
|
shared_names, identical_names = _find_identical([{"a", "b"}], state_dict) |
|
self.assertEqual(shared_names, [{"a", "b"}]) |
|
self.assertEqual(identical_names, []) |
|
|