|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
from queue import Empty |
|
from threading import Thread |
|
|
|
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available |
|
from transformers.testing_utils import CaptureStdout, require_torch, torch_device |
|
|
|
from ..test_modeling_common import ids_tensor |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from transformers import AutoModelForCausalLM |
|
|
|
|
|
@require_torch |
|
class StreamerTester(unittest.TestCase): |
|
def test_text_streamer_matches_non_streaming(self): |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) |
|
model.config.eos_token_id = -1 |
|
|
|
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device) |
|
greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False) |
|
greedy_text = tokenizer.decode(greedy_ids[0]) |
|
|
|
with CaptureStdout() as cs: |
|
streamer = TextStreamer(tokenizer) |
|
model.generate(input_ids, max_new_tokens=10, do_sample=False, streamer=streamer) |
|
|
|
streamer_text = cs.out[:-1] |
|
|
|
self.assertEqual(streamer_text, greedy_text) |
|
|
|
def test_iterator_streamer_matches_non_streaming(self): |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) |
|
model.config.eos_token_id = -1 |
|
|
|
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device) |
|
greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False) |
|
greedy_text = tokenizer.decode(greedy_ids[0]) |
|
|
|
streamer = TextIteratorStreamer(tokenizer) |
|
generation_kwargs = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} |
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
streamer_text = "" |
|
for new_text in streamer: |
|
streamer_text += new_text |
|
|
|
self.assertEqual(streamer_text, greedy_text) |
|
|
|
def test_text_streamer_skip_prompt(self): |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) |
|
model.config.eos_token_id = -1 |
|
|
|
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device) |
|
greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False) |
|
new_greedy_ids = greedy_ids[:, input_ids.shape[1] :] |
|
new_greedy_text = tokenizer.decode(new_greedy_ids[0]) |
|
|
|
with CaptureStdout() as cs: |
|
streamer = TextStreamer(tokenizer, skip_prompt=True) |
|
model.generate(input_ids, max_new_tokens=10, do_sample=False, streamer=streamer) |
|
|
|
streamer_text = cs.out[:-1] |
|
|
|
self.assertEqual(streamer_text, new_greedy_text) |
|
|
|
def test_text_streamer_decode_kwargs(self): |
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2") |
|
model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2").to(torch_device) |
|
model.config.eos_token_id = -1 |
|
|
|
input_ids = torch.ones((1, 5), device=torch_device).long() * model.config.bos_token_id |
|
with CaptureStdout() as cs: |
|
streamer = TextStreamer(tokenizer, skip_special_tokens=True) |
|
model.generate(input_ids, max_new_tokens=1, do_sample=False, streamer=streamer) |
|
|
|
|
|
|
|
streamer_text = cs.out[:-1] |
|
streamer_text_tokenized = tokenizer(streamer_text, return_tensors="pt") |
|
self.assertEqual(streamer_text_tokenized.input_ids.shape, (1, 1)) |
|
|
|
def test_iterator_streamer_timeout(self): |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) |
|
model.config.eos_token_id = -1 |
|
|
|
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device) |
|
streamer = TextIteratorStreamer(tokenizer, timeout=0.001) |
|
generation_kwargs = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} |
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
|
|
with self.assertRaises(Empty): |
|
streamer_text = "" |
|
for new_text in streamer: |
|
streamer_text += new_text |
|
|