Aston-xMAD's picture
updated import
1eae062 verified
import os
import platform
import sys
import time
import boto3
from botocore.exceptions import NoCredentialsError
import logging
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
os.environ["TOKENIZERS_PARALLELISM"] = "0"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
# device = "cuda"
# has_gpu = torch.cuda.is_available()
# device = "cuda" if has_gpu else "cpu"
# print(f"Python Platform: {platform.platform()}")
# print(f"Python Version: {sys.version}")
# print(f"PyTorch Version: {torch.__version__}")
# print("GPU Availability:", "Available" if has_gpu else "Not Available")
# print(f"Target Device: {device}")
# if has_gpu:
# print(f"GPU Type: {torch.cuda.get_device_name(0)}")
# print(f"CUDA Version: {torch.version.cuda}")
# else:
# print("CUDA is not available.")
def download_xmad_file():
s3 = boto3.client('s3',
aws_access_key_id=os.getenv('AWS_ACCESS_KEY_ID'),
aws_secret_access_key=os.getenv('AWS_SECRET_ACCESS_KEY'))
# Create the .codebooks directory if it doesn't exist
codebooks_dir = '.codebooks'
os.makedirs(codebooks_dir, exist_ok=True)
temp_file_path = os.path.join(codebooks_dir, 'llama-3-8b-instruct_1bit.xmad')
try:
# Download the file to the .codebooks directory
s3.download_file('xmad-quantized-models', 'llama-3-8b-instruct_1bit.xmad', temp_file_path)
print("Download Successful")
# Restrict permissions on the .codebooks directory
os.chmod(codebooks_dir, 0o700)
except NoCredentialsError:
print("Credentials not available")
download_xmad_file()
def get_gpu_memory():
return torch.cuda.memory_allocated() / 1024 / 1024 # Convert to MiB
class TorchTracemalloc:
def __init__(self):
self.begin = 0
self.peak = 0
def __enter__(self):
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
torch.cuda.synchronize()
self.begin = get_gpu_memory()
return self
def __exit__(self, *exc):
torch.cuda.synchronize()
self.peak = torch.cuda.max_memory_allocated() / 1024 / 1024
def consumed(self):
return self.peak - self.begin
def load_model_and_tokenizer():
model_name = "NousResearch/Meta-Llama-3-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
special_tokens = {"pad_token": "<PAD>"}
tokenizer.add_special_tokens(special_tokens)
config = AutoConfig.from_pretrained(model_name)
setattr(
config, "quantizer_path", ".codebooks/llama-3-8b-instruct_1bit.xmad"
)
setattr(config, "window_length", 32)
# model = AutoModelForCausalLM.from_pretrained(
# model_name, config=config, torch_dtype=torch.float16
# ).to(device)
model = AutoModelForCausalLM.from_pretrained(
model_name, config=config, torch_dtype=torch.float16, device_map="auto"
)
print(f"Quantizer path in model config: {model.config.quantizer_path}")
logging.info(f"Quantizer path in model config: {model.config.quantizer_path}")
if len(tokenizer) > model.get_input_embeddings().weight.shape[0]:
print(
"WARNING: Resizing the embedding matrix to match the tokenizer vocab size."
)
model.resize_token_embeddings(len(tokenizer))
tokenizer.padding_side = "left"
model.config.pad_token_id = tokenizer.pad_token_id
return model, tokenizer
model, tokenizer = load_model_and_tokenizer()
def process_dialog(message, history):
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>"),
]
dialog = [
{"role": "user" if i % 2 == 0 else "assistant", "content": msg}
for i, (msg, _) in enumerate(history)
]
dialog.append({"role": "user", "content": message})
prompt = tokenizer.apply_chat_template(
dialog, tokenize=False, add_generation_prompt=True
)
tokenized_input_prompt_ids = tokenizer(
prompt, return_tensors="pt"
).input_ids.to(model.device)
start_time = time.time()
with TorchTracemalloc() as tracemalloc:
with torch.no_grad():
output = model.generate(
tokenized_input_prompt_ids,
# max_new_tokens=512,
temperature=0.4,
do_sample=True,
eos_token_id=terminators,
pad_token_id=tokenizer.pad_token_id,
)
end_time = time.time()
response = output[0][tokenized_input_prompt_ids.shape[-1] :]
cleaned_response = tokenizer.decode(
response,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
generation_time = end_time - start_time
gpu_memory = tracemalloc.consumed()
return cleaned_response, generation_time, gpu_memory
def chatbot_response(message, history):
response, generation_time, gpu_memory = process_dialog(message, history)
metrics = f"\n\n---\n\n **Metrics**\t*Answer Generation Time:* `{generation_time:.2f} sec`\t*GPU Memory Consumption:* `{gpu_memory:.2f} MiB`\n\n"
return response + metrics
def process_dialog_streaming(message, history):
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>"),
]
dialog = [
{"role": "user" if i % 2 == 0 else "assistant", "content": msg}
for i, (msg, _) in enumerate(history)
]
dialog.append({"role": "user", "content": message})
prompt = tokenizer.apply_chat_template(
dialog, tokenize=False, add_generation_prompt=True
)
tokenized_input_prompt_ids = tokenizer(
prompt, return_tensors="pt"
).input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
inputs=tokenized_input_prompt_ids,
streamer=streamer,
max_new_tokens=512,
temperature=0.4,
do_sample=True,
eos_token_id=terminators,
pad_token_id=tokenizer.pad_token_id,
)
start_time = time.time()
total_tokens = 0
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
total_tokens += 1
current_time = time.time()
elapsed_time = current_time - start_time
tokens_per_second = total_tokens / elapsed_time if elapsed_time > 0 else 0
print(f"Tokens per second: {tokens_per_second:.2f}", end="\r")
yield generated_text, elapsed_time, tokens_per_second
thread.join()
def chatbot_response_streaming(message, history):
for response, generation_time, tokens_per_second in process_dialog_streaming(message, history):
metrics = f"\n\n---\n\n **Metrics**\t*Answer Generation Time:* `{generation_time:.2f} sec`\t*Tokens per Second:* `{tokens_per_second:.2f}`\n\n"
yield response + metrics
demo = gr.ChatInterface(
fn=chatbot_response_streaming,
examples=["Hello", "How are you?", "Tell me a joke"],
title="Chat with xMAD's: 1-bit-Llama-3-8B-Instruct Model",
description="Contact [email protected] to set up a demo",
)
if __name__ == "__main__":
username = os.getenv("AUTH_USERNAME")
password = os.getenv("AUTH_PASSWORD")
demo.launch(auth=(username, password))
# demo.launch()