File size: 11,312 Bytes
b37c16f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# coding=utf-8
# Copyright 2022 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import os
import tempfile
import unittest

import numpy as np
from huggingface_hub import hf_hub_download

from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow

from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin


if is_tf_available():
    import tensorflow as tf

    from transformers import (
        AutoTokenizer,
        TFAutoModelForCausalLM,
        TFAutoModelForSeq2SeqLM,
        TFAutoModelForSpeechSeq2Seq,
        TFAutoModelForVision2Seq,
        TFBartForConditionalGeneration,
        TFLogitsProcessorList,
        TFMinLengthLogitsProcessor,
    )
    from transformers.modeling_tf_utils import keras

if is_tensorflow_text_available():
    import tensorflow_text as text


@require_tf
class TFGenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMixin):
    # setting framework_dependent_parameters needs to be gated, just like its contents' imports
    if is_tf_available():
        framework_dependent_parameters = {
            "AutoModelForCausalLM": TFAutoModelForCausalLM,
            "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeq2Seq,
            "AutoModelForSeq2SeqLM": TFAutoModelForSeq2SeqLM,
            "AutoModelForVision2Seq": TFAutoModelForVision2Seq,
            "LogitsProcessorList": TFLogitsProcessorList,
            "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor,
            "create_tensor_fn": tf.convert_to_tensor,
            "floats_tensor": floats_tensor,
            "return_tensors": "tf",
        }

    @slow
    def test_generate_tf_function_export_fixed_input_length(self):
        # TF-only test: tf.saved_model export
        test_model = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_length = 2
        max_new_tokens = 2

        class DummyModel(tf.Module):
            def __init__(self, model):
                super(DummyModel, self).__init__()
                self.model = model

            @tf.function(
                input_signature=(
                    tf.TensorSpec((None, input_length), tf.int32, name="input_ids"),
                    tf.TensorSpec((None, input_length), tf.int32, name="attention_mask"),
                ),
                jit_compile=True,
            )
            def serving(self, input_ids, attention_mask):
                outputs = self.model.generate(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    max_new_tokens=max_new_tokens,
                    return_dict_in_generate=True,
                )
                return {"sequences": outputs["sequences"]}

        dummy_input_ids = [[2, 0], [102, 103]]
        dummy_attention_masks = [[1, 0], [1, 1]]
        dummy_model = DummyModel(model=test_model)
        with tempfile.TemporaryDirectory() as tmp_dir:
            tf.saved_model.save(dummy_model, tmp_dir, signatures={"serving_default": dummy_model.serving})
            serving_func = tf.saved_model.load(tmp_dir).signatures["serving_default"]
            for batch_size in range(1, len(dummy_input_ids) + 1):
                inputs = {
                    "input_ids": tf.constant(dummy_input_ids[:batch_size]),
                    "attention_mask": tf.constant(dummy_attention_masks[:batch_size]),
                }
                tf_func_outputs = serving_func(**inputs)["sequences"]
                tf_model_outputs = test_model.generate(**inputs, max_new_tokens=max_new_tokens)
                tf.debugging.assert_equal(tf_func_outputs, tf_model_outputs)

    @slow
    def test_generate_tf_function_export_fixed_batch_size(self):
        # TF-only test: tf.saved_model export
        test_model = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        batch_size = 1
        max_new_tokens = 2

        class DummyModel(tf.Module):
            def __init__(self, model):
                super(DummyModel, self).__init__()
                self.model = model

            @tf.function(
                input_signature=(
                    tf.TensorSpec((batch_size, None), tf.int32, name="input_ids"),
                    tf.TensorSpec((batch_size, None), tf.int32, name="attention_mask"),
                ),
                jit_compile=True,
            )
            def serving(self, input_ids, attention_mask):
                outputs = self.model.generate(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    max_new_tokens=max_new_tokens,
                    return_dict_in_generate=True,
                )
                return {"sequences": outputs["sequences"]}

        dummy_input_ids = [[2], [102, 103]]
        dummy_attention_masks = [[1], [1, 1]]
        dummy_model = DummyModel(model=test_model)
        with tempfile.TemporaryDirectory() as tmp_dir:
            tf.saved_model.save(dummy_model, tmp_dir, signatures={"serving_default": dummy_model.serving})
            serving_func = tf.saved_model.load(tmp_dir).signatures["serving_default"]
            for input_row in range(len(dummy_input_ids)):
                inputs = {
                    "input_ids": tf.constant([dummy_input_ids[input_row]]),
                    "attention_mask": tf.constant([dummy_attention_masks[input_row]]),
                }
                tf_func_outputs = serving_func(**inputs)["sequences"]
                tf_model_outputs = test_model.generate(**inputs, max_new_tokens=max_new_tokens)
                tf.debugging.assert_equal(tf_func_outputs, tf_model_outputs)

    @slow
    @require_tensorflow_text
    def test_generate_tf_function_export_with_tf_tokenizer(self):
        # TF-only test: tf.saved_model export
        with tempfile.TemporaryDirectory() as tmp_dir:
            # file needed to load the TF tokenizer
            hf_hub_download(repo_id="google/flan-t5-small", filename="spiece.model", local_dir=tmp_dir)

            class CompleteSentenceTransformer(keras.layers.Layer):
                def __init__(self):
                    super().__init__()
                    self.tokenizer = text.SentencepieceTokenizer(
                        model=tf.io.gfile.GFile(os.path.join(tmp_dir, "spiece.model"), "rb").read()
                    )
                    self.model = TFAutoModelForSeq2SeqLM.from_pretrained("hf-internal-testing/tiny-random-t5")

                def call(self, inputs, *args, **kwargs):
                    tokens = self.tokenizer.tokenize(inputs)
                    input_ids, attention_mask = text.pad_model_inputs(
                        tokens, max_seq_length=64, pad_value=self.model.config.pad_token_id
                    )
                    outputs = self.model.generate(input_ids=input_ids, attention_mask=attention_mask)
                    return self.tokenizer.detokenize(outputs)

            complete_model = CompleteSentenceTransformer()
            inputs = keras.layers.Input(shape=(1,), dtype=tf.string, name="inputs")
            outputs = complete_model(inputs)
            keras_model = keras.Model(inputs, outputs)
            keras_model.save(tmp_dir)

    def test_eos_token_id_int_and_list_top_k_top_sampling(self):
        # Has PT equivalent: this test relies on random sampling
        generation_kwargs = {
            "do_sample": True,
            "num_beams": 1,
            "top_p": 0.7,
            "top_k": 10,
            "temperature": 0.7,
        }
        expectation = 14

        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        text = """Hello, my dog is cute and"""
        tokens = tokenizer(text, return_tensors="tf")
        model = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2")

        eos_token_id = 638
        # forces the generation to happen on CPU, to avoid GPU-related quirks
        with tf.device(":/CPU:0"):
            tf.random.set_seed(0)
            generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))

        eos_token_id = [638, 198]
        with tf.device(":/CPU:0"):
            tf.random.set_seed(0)
            generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))

    def test_model_kwarg_encoder_signature_filtering(self):
        # Has PT equivalent: ample use of framework-specific code
        bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        article = """Hugging Face is a technology company based in New York and Paris."""
        input_ids = bart_tokenizer(article, return_tensors="tf").input_ids
        bart_model = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart")
        output = bart_model.generate(input_ids).numpy()

        # Let's create a fake model that has a different signature. In particular, this fake model accepts "foo" as an
        # argument. Because "foo" is not in the encoder signature and doesn't start with "decoder_", it will be part of
        # the encoder kwargs prior to signature filtering, which would lead to an exception. But filtering kicks in and
        # saves the day.
        class FakeBart(TFBartForConditionalGeneration):
            def call(self, input_ids, foo=None, **kwargs):
                return super().call(input_ids, **kwargs)

        bart_model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart")
        fake_output = bart_model.generate(input_ids, foo="bar").numpy()
        self.assertTrue(np.array_equal(output, fake_output))

        # Encoder signature filtering only kicks in if it doesn't accept wildcard kwargs. The following test will fail
        # because it doesn't do signature filtering.
        class FakeEncoder(bart_model.model.encoder.__class__):
            def call(self, input_ids, **kwargs):
                return super().call(input_ids, **kwargs)

        fake_encoder = FakeEncoder(bart_model.config, bart_model.model.shared)
        bart_model.model.encoder = fake_encoder

        # Normal generation still works (the output will be different because the encoder weights are different)
        fake_output = bart_model.generate(input_ids).numpy()
        with self.assertRaises(ValueError):
            # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
            bart_model.generate(input_ids, foo="bar")