File size: 11,312 Bytes
b37c16f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# coding=utf-8
# Copyright 2022 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeq2SeqLM,
TFAutoModelForSpeechSeq2Seq,
TFAutoModelForVision2Seq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
)
from transformers.modeling_tf_utils import keras
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class TFGenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMixin):
# setting framework_dependent_parameters needs to be gated, just like its contents' imports
if is_tf_available():
framework_dependent_parameters = {
"AutoModelForCausalLM": TFAutoModelForCausalLM,
"AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeq2Seq,
"AutoModelForSeq2SeqLM": TFAutoModelForSeq2SeqLM,
"AutoModelForVision2Seq": TFAutoModelForVision2Seq,
"LogitsProcessorList": TFLogitsProcessorList,
"MinLengthLogitsProcessor": TFMinLengthLogitsProcessor,
"create_tensor_fn": tf.convert_to_tensor,
"floats_tensor": floats_tensor,
"return_tensors": "tf",
}
@slow
def test_generate_tf_function_export_fixed_input_length(self):
# TF-only test: tf.saved_model export
test_model = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2")
input_length = 2
max_new_tokens = 2
class DummyModel(tf.Module):
def __init__(self, model):
super(DummyModel, self).__init__()
self.model = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length), tf.int32, name="input_ids"),
tf.TensorSpec((None, input_length), tf.int32, name="attention_mask"),
),
jit_compile=True,
)
def serving(self, input_ids, attention_mask):
outputs = self.model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
return_dict_in_generate=True,
)
return {"sequences": outputs["sequences"]}
dummy_input_ids = [[2, 0], [102, 103]]
dummy_attention_masks = [[1, 0], [1, 1]]
dummy_model = DummyModel(model=test_model)
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(dummy_model, tmp_dir, signatures={"serving_default": dummy_model.serving})
serving_func = tf.saved_model.load(tmp_dir).signatures["serving_default"]
for batch_size in range(1, len(dummy_input_ids) + 1):
inputs = {
"input_ids": tf.constant(dummy_input_ids[:batch_size]),
"attention_mask": tf.constant(dummy_attention_masks[:batch_size]),
}
tf_func_outputs = serving_func(**inputs)["sequences"]
tf_model_outputs = test_model.generate(**inputs, max_new_tokens=max_new_tokens)
tf.debugging.assert_equal(tf_func_outputs, tf_model_outputs)
@slow
def test_generate_tf_function_export_fixed_batch_size(self):
# TF-only test: tf.saved_model export
test_model = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2")
batch_size = 1
max_new_tokens = 2
class DummyModel(tf.Module):
def __init__(self, model):
super(DummyModel, self).__init__()
self.model = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None), tf.int32, name="input_ids"),
tf.TensorSpec((batch_size, None), tf.int32, name="attention_mask"),
),
jit_compile=True,
)
def serving(self, input_ids, attention_mask):
outputs = self.model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
return_dict_in_generate=True,
)
return {"sequences": outputs["sequences"]}
dummy_input_ids = [[2], [102, 103]]
dummy_attention_masks = [[1], [1, 1]]
dummy_model = DummyModel(model=test_model)
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(dummy_model, tmp_dir, signatures={"serving_default": dummy_model.serving})
serving_func = tf.saved_model.load(tmp_dir).signatures["serving_default"]
for input_row in range(len(dummy_input_ids)):
inputs = {
"input_ids": tf.constant([dummy_input_ids[input_row]]),
"attention_mask": tf.constant([dummy_attention_masks[input_row]]),
}
tf_func_outputs = serving_func(**inputs)["sequences"]
tf_model_outputs = test_model.generate(**inputs, max_new_tokens=max_new_tokens)
tf.debugging.assert_equal(tf_func_outputs, tf_model_outputs)
@slow
@require_tensorflow_text
def test_generate_tf_function_export_with_tf_tokenizer(self):
# TF-only test: tf.saved_model export
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="google/flan-t5-small", filename="spiece.model", local_dir=tmp_dir)
class CompleteSentenceTransformer(keras.layers.Layer):
def __init__(self):
super().__init__()
self.tokenizer = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(tmp_dir, "spiece.model"), "rb").read()
)
self.model = TFAutoModelForSeq2SeqLM.from_pretrained("hf-internal-testing/tiny-random-t5")
def call(self, inputs, *args, **kwargs):
tokens = self.tokenizer.tokenize(inputs)
input_ids, attention_mask = text.pad_model_inputs(
tokens, max_seq_length=64, pad_value=self.model.config.pad_token_id
)
outputs = self.model.generate(input_ids=input_ids, attention_mask=attention_mask)
return self.tokenizer.detokenize(outputs)
complete_model = CompleteSentenceTransformer()
inputs = keras.layers.Input(shape=(1,), dtype=tf.string, name="inputs")
outputs = complete_model(inputs)
keras_model = keras.Model(inputs, outputs)
keras_model.save(tmp_dir)
def test_eos_token_id_int_and_list_top_k_top_sampling(self):
# Has PT equivalent: this test relies on random sampling
generation_kwargs = {
"do_sample": True,
"num_beams": 1,
"top_p": 0.7,
"top_k": 10,
"temperature": 0.7,
}
expectation = 14
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
text = """Hello, my dog is cute and"""
tokens = tokenizer(text, return_tensors="tf")
model = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2")
eos_token_id = 638
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(":/CPU:0"):
tf.random.set_seed(0)
generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
self.assertTrue(expectation == len(generated_tokens[0]))
eos_token_id = [638, 198]
with tf.device(":/CPU:0"):
tf.random.set_seed(0)
generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
self.assertTrue(expectation == len(generated_tokens[0]))
def test_model_kwarg_encoder_signature_filtering(self):
# Has PT equivalent: ample use of framework-specific code
bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
article = """Hugging Face is a technology company based in New York and Paris."""
input_ids = bart_tokenizer(article, return_tensors="tf").input_ids
bart_model = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart")
output = bart_model.generate(input_ids).numpy()
# Let's create a fake model that has a different signature. In particular, this fake model accepts "foo" as an
# argument. Because "foo" is not in the encoder signature and doesn't start with "decoder_", it will be part of
# the encoder kwargs prior to signature filtering, which would lead to an exception. But filtering kicks in and
# saves the day.
class FakeBart(TFBartForConditionalGeneration):
def call(self, input_ids, foo=None, **kwargs):
return super().call(input_ids, **kwargs)
bart_model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart")
fake_output = bart_model.generate(input_ids, foo="bar").numpy()
self.assertTrue(np.array_equal(output, fake_output))
# Encoder signature filtering only kicks in if it doesn't accept wildcard kwargs. The following test will fail
# because it doesn't do signature filtering.
class FakeEncoder(bart_model.model.encoder.__class__):
def call(self, input_ids, **kwargs):
return super().call(input_ids, **kwargs)
fake_encoder = FakeEncoder(bart_model.config, bart_model.model.shared)
bart_model.model.encoder = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
fake_output = bart_model.generate(input_ids).numpy()
with self.assertRaises(ValueError):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(input_ids, foo="bar")
|