import matplotlib import numpy as np import torch from PIL import Image from PIL.Image import Resampling from torchvision.transforms import InterpolationMode from torchvision.transforms.functional import resize import cv2 import re def load_pfm(file): color = None width = None height = None scale = None data_type = None header = file.readline().decode('UTF-8').rstrip() if header == 'PF': color = True elif header == 'Pf': color = False else: raise Exception('Not a PFM file.') dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('UTF-8')) if dim_match: width, height = map(int, dim_match.groups()) else: raise Exception('Malformed PFM header.') # scale = float(file.readline().rstrip()) scale = float((file.readline()).decode('UTF-8').rstrip()) if scale < 0: # little-endian data_type = '= 2, "Invalid dimension" if isinstance(depth_map, torch.Tensor): depth = depth_map.detach().clone().squeeze().cpu().numpy() elif isinstance(depth_map, np.ndarray): depth = depth_map.copy().squeeze() # reshape to [ (B,) H, W ] if depth.ndim < 3: depth = depth[np.newaxis, :, :] # colorize cm = matplotlib.colormaps[cmap] # if min_depth is None or max_depth is None: # if cmap == "magma_r": # min_depth = np.percentile(depth, 2) # max_depth = np.percentile(depth, 85) # elif cmap == "Spectral": # min_depth = np.percentile(depth, 2) # max_depth = np.percentile(depth, 98) if min_depth != max_depth: depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1) else: # Avoid 0-division depth = depth * 0. img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] # value from 0 to 1 img_colored_np = np.rollaxis(img_colored_np, 3, 1) if valid_mask is not None: if isinstance(depth_map, torch.Tensor): valid_mask = valid_mask.detach().numpy() valid_mask = valid_mask.squeeze() # [H, W] or [B, H, W] if valid_mask.ndim < 3: valid_mask = valid_mask[np.newaxis, np.newaxis, :, :] else: valid_mask = valid_mask[:, np.newaxis, :, :] valid_mask = np.repeat(valid_mask, 3, axis=1) img_colored_np[~valid_mask] = 0 if isinstance(depth_map, torch.Tensor): img_colored = torch.from_numpy(img_colored_np).float() elif isinstance(depth_map, np.ndarray): img_colored = img_colored_np return img_colored def chw2hwc(chw): assert 3 == len(chw.shape) if isinstance(chw, torch.Tensor): hwc = torch.permute(chw, (1, 2, 0)) elif isinstance(chw, np.ndarray): hwc = np.moveaxis(chw, 0, -1) return hwc def resize_max_res_torch( img: torch.Tensor, max_edge_resolution: int, resample_method: InterpolationMode = InterpolationMode.BILINEAR, ) -> torch.Tensor: """ Resize image to limit maximum edge length while keeping aspect ratio. Args: img (`torch.Tensor`): Image tensor to be resized. max_edge_resolution (`int`): Maximum edge length (pixel). resample_method (`PIL.Image.Resampling`): Resampling method used to resize images. Returns: `torch.Tensor`: Resized image. """ assert 3 == img.dim() _, original_height, original_width = img.shape downscale_factor = min( max_edge_resolution / original_width, max_edge_resolution / original_height ) new_width = int(original_width * downscale_factor) new_height = int(original_height * downscale_factor) round_num = 16 new_width = round(new_width / round_num) * round_num new_height = round(new_height / round_num) * round_num resized_img = resize(img, (new_height, new_width), resample_method, antialias=True) return resized_img def resize_max_res(img: Image.Image, max_edge_resolution: int, resample_method=Resampling.BILINEAR) -> Image.Image: """ Resize image to limit maximum edge length while keeping aspect ratio Args: img (Image.Image): Image to be resized max_edge_resolution (int): Maximum edge length (px). Returns: Image.Image: Resized image. """ # import pdb;pdb.set_trace() if isinstance(img, torch.Tensor): return resize_max_res_torch(img, max_edge_resolution, resample_method) original_width, original_height = img.size downscale_factor = min( max_edge_resolution / original_width, max_edge_resolution / original_height ) new_width = int(original_width * downscale_factor) new_height = int(original_height * downscale_factor) resized_img = img.resize((new_width, new_height), resample=resample_method) return resized_img def get_pil_resample_method(method_str: str) -> Resampling: resample_method_dict = { "bilinear": Resampling.BILINEAR, "bicubic": Resampling.BICUBIC, "nearest": Resampling.NEAREST, } resample_method = resample_method_dict.get(method_str, None) if resample_method is None: raise ValueError(f"Unknown resampling method: {resample_method}") else: return resample_method def get_tv_resample_method(method_str: str) -> InterpolationMode: resample_method_dict = { "bilinear": InterpolationMode.BILINEAR, "bicubic": InterpolationMode.BICUBIC, # "nearest": InterpolationMode.NEAREST_EXACT, } resample_method = resample_method_dict.get(method_str, None) if resample_method is None: raise ValueError(f"Unknown resampling method: {resample_method}") else: return resample_method def create_point_cloud(depth_map, camera_matrix, extrinsic_matrix): """Create point cloud from depth map and camera parameters.""" # Get shape of depth map height, width = depth_map.shape # Create meshgrid for pixel coordinates x = np.linspace(0, width - 1, width) y = np.linspace(0, height - 1, height) x, y = np.meshgrid(x, y) # Normalize pixel coordinates normalized_x = (x - camera_matrix[0, 2]) / camera_matrix[0, 0] normalized_y = (y - camera_matrix[1, 2]) / camera_matrix[1, 1] normalized_z = np.ones_like(x) # Homogeneous coordinates in camera frame depth_map_reshaped = np.repeat(depth_map[:, :, np.newaxis], 3, axis=2) homogeneous_camera_coords = depth_map_reshaped * np.dstack((normalized_x, normalized_y, normalized_z)) # Add ones to the last dimension ones = np.ones((height, width, 1)) homogeneous_camera_coords = np.dstack((homogeneous_camera_coords, ones)) # Transform points to world coordinates homogeneous_world_coords = np.dot(homogeneous_camera_coords, extrinsic_matrix.T) # Divide by the fourth coordinate (homogeneous normalization) point_cloud = (homogeneous_world_coords[:, :, :3] / homogeneous_world_coords[:, :, 3:]) point_cloud = point_cloud.reshape(-1, 3) return point_cloud def write_ply_mask(points,colors,path_ply,mask=None): if mask is not None: num = np.sum(mask) else: num = points.shape[0] ply_header = ''' ply format ascii 1.0 element vertex {} property float x property float y property float z property uchar red property uchar green property uchar blue end_header '''.format(num) # points.shape[0] # import ipdb;ipdb.set_trace() # if mask is not None: with open(path_ply, 'w') as f: f.write(ply_header) for i in range(points.shape[0]): if mask.reshape(-1)[i]: f.write('{} {} {} {} {} {}\n'.format(points[i,0], points[i,1], points[i,2], int(colors[i, 2]*255), int(colors[i, 1]*255), int(colors[i, 0]*255))) def write_ply(points,colors,path_ply,mask=None): if mask is not None: num = np.sum(mask) else: num = points.shape[0] ply_header = '''ply format ascii 1.0 element vertex {} property float x property float y property float z property uchar red property uchar green property uchar blue end_header '''.format(num) with open(path_ply, 'w') as f: f.write(ply_header) for i in range(points.shape[0]): f.write('{} {} {} {} {} {}\n'.format(points[i,0], points[i,1], points[i,2], int(colors[i, 2]*255), int(colors[i, 1]*255), int(colors[i, 0]*255))) def Disparity_Normalization(disparity): min_value = torch.min(disparity) max_value = torch.max(disparity) normalized_disparity = ((disparity -min_value)/(max_value-min_value+1e-5) - 0.5) * 2 return normalized_disparity def Disparity_Normalization_mask(disparity, min_value, max_value): normalized_disparity = ((disparity -min_value)/(max_value-min_value+1e-5) - 0.5) * 2 return normalized_disparity def resize_max_res_tensor(input_tensor,is_disp=False,recom_resolution=768): original_H, original_W = input_tensor.shape[2:] downscale_factor = min(recom_resolution/original_H, recom_resolution/original_W) resized_input_tensor = F.interpolate(input_tensor, scale_factor=downscale_factor,mode='bilinear', align_corners=False) if is_disp: return resized_input_tensor * downscale_factor, downscale_factor else: return resized_input_tensor