ysharma's picture
ysharma HF staff
added imagelslider and examples with caching
ae35a71 verified
raw
history blame
4.74 kB
import gradio as gr
import torch
from PIL import Image
import numpy as np
from distillanydepth.modeling.archs.dam.dam import DepthAnything
from distillanydepth.utils.image_util import chw2hwc, colorize_depth_maps
from distillanydepth.midas.transforms import Resize, NormalizeImage, PrepareForNet
from torchvision.transforms import Compose
import cv2
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from gradio_imageslider import ImageSlider
import spaces
# Helper function to load model from Hugging Face
def load_model_by_name(arch_name, checkpoint_path, device):
model = None
if arch_name == 'depthanything':
# 使用 safetensors 加载模型权重
model_weights = load_file(checkpoint_path) # safetensors 加载方式
# 初始化模型
model = DepthAnything(checkpoint_path=None).to(device)
model.load_state_dict(model_weights) # 将加载的权重应用到模型
model = model.to(device) # 确保模型在正确的设备上
else:
raise NotImplementedError(f"Unknown architecture: {arch_name}")
return model
# Image processing function
def process_image(image, model, device):
if model is None:
return None
# Preprocess the image
image_np = np.array(image)[..., ::-1] / 255
transform = Compose([
Resize(756, 756, resize_target=False, keep_aspect_ratio=True, ensure_multiple_of=14, resize_method='lower_bound', image_interpolation_method=cv2.INTER_CUBIC),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet()
])
image_tensor = transform({'image': image_np})['image']
image_tensor = torch.from_numpy(image_tensor).unsqueeze(0).to(device)
with torch.no_grad(): # Disable autograd since we don't need gradients on CPU
pred_disp, _ = model(image_tensor)
# Ensure the depth map is in the correct shape before colorization
pred_disp_np = pred_disp.cpu().detach().numpy()[0, 0, :, :] # Remove extra singleton dimensions
# Normalize depth map
pred_disp = (pred_disp_np - pred_disp_np.min()) / (pred_disp_np.max() - pred_disp_np.min())
# Colorize depth map
cmap = "Spectral_r"
depth_colored = colorize_depth_maps(pred_disp[None, ..., None], 0, 1, cmap=cmap).squeeze() # Ensure correct dimension
# Convert to uint8 for image display
depth_colored = (depth_colored * 255).astype(np.uint8)
# Convert to HWC format (height, width, channels)
depth_colored_hwc = chw2hwc(depth_colored)
# Resize to match the original image dimensions (height, width)
h, w = image_np.shape[:2]
depth_colored_hwc = cv2.resize(depth_colored_hwc, (w, h), cv2.INTER_LINEAR)
# Convert to a PIL image
depth_image = Image.fromarray(depth_colored_hwc)
return image, depth_image
# Gradio interface function with GPU support
@spaces.GPU
def gradio_interface(image):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_kwargs = dict(
vitb=dict(
encoder='vitb',
features=128,
out_channels=[96, 192, 384, 768],
),
vitl=dict(
encoder="vitl",
features=256,
out_channels=[256, 512, 1024, 1024],
use_bn=False,
use_clstoken=False,
max_depth=150.0,
mode='disparity',
pretrain_type='dinov2',
del_mask_token=False
)
)
# Load model
model = DepthAnything(**model_kwargs['vitl']).to(device)
checkpoint_path = hf_hub_download(repo_id=f"xingyang1/Distill-Any-Depth", filename=f"large/model.safetensors", repo_type="model")
# 使用 safetensors 加载模型权重
model_weights = load_file(checkpoint_path) # safetensors 加载方式
model.load_state_dict(model_weights)
model = model.to(device) # 确保模型在正确的设备上
if model is None:
return None
# Process image and return output
depth_image = process_image(image, model, device)
return depth_image
# Create Gradio interface
iface = gr.Interface(
fn=gradio_interface,
inputs=gr.Image(type="pil"), # Only image input, no mode selection
outputs = ImageSlider(label="Depth slider", type="pil", slider_color="pink"), # Depth image out with a slider
title="Depth Estimation Demo",
description="Upload an image to see the depth estimation results. Our model is running on GPU for faster processing.",
examples=["maizi.jpg", "hair.jpg", "videoframe_10273.png", "videoframe_2168.png", "videoframe_3289.png"],
cache_examples=True,)
# Launch the Gradio interface
iface.launch()