Spaces:
Runtime error
Runtime error
from typing import Tuple | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from detectron2.config import configurable | |
from detectron2.data import MetadataCatalog | |
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head | |
from detectron2.modeling.backbone import Backbone | |
from detectron2.modeling.postprocessing import sem_seg_postprocess | |
from detectron2.structures import Boxes, ImageList, Instances | |
from detectron2.utils.memory import retry_if_cuda_oom | |
from .modeling.criterion import SetCriterion | |
from .modeling.matcher import HungarianMatcher | |
from segment_anything.build_sam import sam_model_registry | |
from .modeling.transformer_decoder.frozenseg_transformer_decoder import MaskPooling, get_classification_logits | |
from segment_anything import sam_model_registry | |
import pickle | |
import os | |
VILD_PROMPT = [ | |
"a photo of a {}.", | |
"This is a photo of a {}", | |
"There is a {} in the scene", | |
"There is the {} in the scene", | |
"a photo of a {} in the scene", | |
"a photo of a small {}.", | |
"a photo of a medium {}.", | |
"a photo of a large {}.", | |
"This is a photo of a small {}.", | |
"This is a photo of a medium {}.", | |
"This is a photo of a large {}.", | |
"There is a small {} in the scene.", | |
"There is a medium {} in the scene.", | |
"There is a large {} in the scene.", | |
] | |
def split_labels(x): | |
res = [] | |
for x_ in x: | |
x_ = x_.replace(', ', ',') | |
x_ = x_.split(',') # there can be multiple synonyms for single class | |
res.append(x_) | |
return res | |
def fill_all_templates_ensemble(x_=''): | |
res = [] | |
for x in x_: | |
for template in VILD_PROMPT: | |
res.append(template.format(x)) | |
return res, len(res) // len(VILD_PROMPT) | |
class FrozenSeg(nn.Module): | |
""" | |
Main class for mask classification semantic segmentation architectures. | |
""" | |
def __init__( | |
self, | |
*, | |
backbone: Backbone, | |
sem_seg_head: nn.Module, | |
criterion: nn.Module, | |
num_queries: int, | |
object_mask_threshold: float, | |
overlap_threshold: float, | |
train_metadata, | |
test_metadata, | |
size_divisibility: int, | |
sem_seg_postprocess_before_inference: bool, | |
pixel_mean: Tuple[float], | |
pixel_std: Tuple[float], | |
# inference | |
semantic_on: bool, | |
panoptic_on: bool, | |
instance_on: bool, | |
test_topk_per_image: int, | |
geometric_ensemble_alpha: float, | |
geometric_ensemble_beta: float, | |
ensemble_on_valid_mask: bool, | |
# FrozenSeg | |
sam_name: str, | |
mask_pred_alpha: float, | |
use_sam_masks: bool, | |
recall_on: bool, | |
pkl_sam_name: str, | |
): | |
""" | |
Args: | |
backbone: a backbone module, must follow detectron2's backbone interface | |
sem_seg_head: a module that predicts semantic segmentation from backbone features | |
criterion: a module that defines the loss | |
num_queries: int, number of queries | |
object_mask_threshold: float, threshold to filter query based on classification score | |
for panoptic segmentation inference | |
overlap_threshold: overlap threshold used in general inference for panoptic segmentation | |
metadata: dataset meta, get `thing` and `stuff` category names for panoptic | |
segmentation inference | |
size_divisibility: Some backbones require the input height and width to be divisible by a | |
specific integer. We can use this to override such requirement. | |
sem_seg_postprocess_before_inference: whether to resize the prediction back | |
to original input size before semantic segmentation inference or after. | |
For high-resolution dataset like Mapillary, resizing predictions before | |
inference will cause OOM error. | |
pixel_mean, pixel_std: list or tuple with #channels element, representing | |
the per-channel mean and std to be used to normalize the input image | |
semantic_on: bool, whether to output semantic segmentation prediction | |
instance_on: bool, whether to output instance segmentation prediction | |
panoptic_on: bool, whether to output panoptic segmentation prediction | |
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image | |
""" | |
super().__init__() | |
self.backbone = backbone | |
self.sem_seg_head = sem_seg_head | |
self.criterion = criterion | |
self.num_queries = num_queries | |
self.overlap_threshold = overlap_threshold | |
self.object_mask_threshold = object_mask_threshold | |
self.train_metadata = train_metadata | |
self.test_metadata = test_metadata | |
if size_divisibility < 0: | |
# use backbone size_divisibility if not set | |
size_divisibility = self.backbone.size_divisibility | |
self.size_divisibility = size_divisibility | |
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference | |
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) | |
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) | |
# additional args | |
self.semantic_on = semantic_on | |
self.instance_on = instance_on | |
self.panoptic_on = panoptic_on | |
self.test_topk_per_image = test_topk_per_image | |
if not self.semantic_on: | |
assert self.sem_seg_postprocess_before_inference | |
self.mask_pooling = MaskPooling() | |
self.geometric_ensemble_alpha = geometric_ensemble_alpha | |
self.geometric_ensemble_beta = geometric_ensemble_beta | |
self.ensemble_on_valid_mask = ensemble_on_valid_mask | |
self.train_text_classifier = None | |
self.test_text_classifier = None | |
self.void_embedding = nn.Embedding(1, backbone.dim_latent) # use this for void | |
_, self.train_num_templates, self.train_class_names = self.prepare_class_names_from_metadata(train_metadata, train_metadata) | |
self.category_overlapping_mask, self.test_num_templates, self.test_class_names = self.prepare_class_names_from_metadata(test_metadata, train_metadata) | |
self.demo_all_text_embedding_cache = {} | |
# This consists of COCO, ADE20K, LVIS | |
if os.path.exists("demo_all_text_embedding_cache.pth"): | |
# key: str of class name, value: tensor in shape of C | |
self.demo_all_text_embedding_cache = torch.load("demo_all_text_embedding_cache.pth", map_location=self.device) | |
self.demo_all_text_embedding_cache = {k:v.to(self.device) for k,v in self.demo_all_text_embedding_cache.items()} | |
# sam args | |
sam_ckpt_path = { | |
'vit_t': './pretrained_checkpoint/mobile_sam.pt', | |
'vit_b': './pretrained_checkpoint/sam_vit_b_01ec64.pth', | |
'vit_l': './pretrained_checkpoint/sam_vit_l_0b3195.pth', | |
'vit_h': './pretrained_checkpoint/sam_vit_h_4b8939.pth', | |
} | |
self.sam = sam_model_registry[sam_name](checkpoint=sam_ckpt_path[sam_name]) | |
# freeze SAM | |
for name, param in self.sam.named_parameters(): | |
if 'mask_decoder' in name: | |
param.requires_grad = False | |
else: | |
param.requires_grad = False | |
if not self.training: | |
sam_mask_for_each_dataset={ | |
"openvocab_ade20k_full_sem_seg_val": 'ade20k_val', | |
'openvocab_coco_2017_val_panoptic_with_sem_seg':'', | |
'openvocab_pascal_ctx59_sem_seg_val': 'pc_val', | |
'openvocab_pascal_ctx459_sem_seg_val': 'pc_val', | |
'openvocab_pascal21_sem_seg_val':'pas_val', | |
"bdd10k_val_sem_seg":'bdd_val', | |
} | |
self.sam_mask_dataset_name = sam_mask_for_each_dataset[self.test_metadata.name] | |
self.counter = 0 | |
self.use_sam_masks = use_sam_masks | |
self.mask_pred_alpha = mask_pred_alpha | |
self.recall_on = recall_on | |
self.pkl_sam_name = pkl_sam_name | |
def prepare_class_names_from_metadata(self, metadata, train_metadata): | |
# get text classifier | |
try: | |
class_names = split_labels(metadata.stuff_classes) # it includes both thing and stuff | |
train_class_names = split_labels(train_metadata.stuff_classes) | |
except: | |
# this could be for insseg, where only thing_classes are available | |
class_names = split_labels(metadata.thing_classes) | |
train_class_names = split_labels(train_metadata.thing_classes) | |
train_class_names = {l for label in train_class_names for l in label} | |
category_overlapping_list = [] | |
for test_class_names in class_names: | |
is_overlapping = not set(train_class_names).isdisjoint(set(test_class_names)) | |
category_overlapping_list.append(is_overlapping) | |
category_overlapping_mask = torch.tensor( | |
category_overlapping_list, dtype=torch.long) | |
num_templates = [] | |
templated_class_names = [] | |
for x in class_names: | |
templated_classes, templated_classes_num = fill_all_templates_ensemble(x) | |
templated_class_names += templated_classes | |
num_templates.append(templated_classes_num) # how many templates for current classes | |
class_names = templated_class_names | |
return category_overlapping_mask, num_templates, class_names | |
def set_metadata(self, metadata): | |
self.test_metadata = metadata | |
self.category_overlapping_mask, self.test_num_templates, self.test_class_names = self.prepare_class_names_from_metadata(metadata, self.train_metadata) | |
self.test_text_classifier = None | |
return | |
def get_text_classifier(self): | |
if self.training: | |
if self.train_text_classifier is None: | |
text_classifier = [] | |
# this is needed to avoid oom, which may happen when num of class is large | |
bs = 128 | |
for idx in range(0, len(self.train_class_names), bs): | |
text_classifier.append(self.backbone.get_text_classifier(self.train_class_names[idx:idx+bs], self.device).detach()) | |
text_classifier = torch.cat(text_classifier, dim=0) | |
# average across templates and normalization. | |
text_classifier /= text_classifier.norm(dim=-1, keepdim=True) | |
text_classifier = text_classifier.reshape(text_classifier.shape[0]//len(VILD_PROMPT), len(VILD_PROMPT), text_classifier.shape[-1]).mean(1) | |
text_classifier /= text_classifier.norm(dim=-1, keepdim=True) | |
self.train_text_classifier = text_classifier | |
return self.train_text_classifier, self.train_num_templates | |
else: | |
if self.test_text_classifier is None: | |
try: | |
nontemplated_class_names = split_labels(self.test_metadata.stuff_classes) # it includes both thing and stuff | |
except: | |
# this could be for insseg, where only thing_classes are available | |
nontemplated_class_names = split_labels(self.test_metadata.thing_classes) | |
text2classifier = {} | |
test_class_names = [] | |
uncached_class_name = [] | |
text_classifier = [] | |
# exclude those already in cache | |
for class_names in nontemplated_class_names: | |
for class_name in class_names: | |
if class_name in self.demo_all_text_embedding_cache: | |
text2classifier[class_name] = self.demo_all_text_embedding_cache[class_name].to(self.device) | |
else: | |
test_class_names += fill_all_templates_ensemble([class_name])[0] | |
uncached_class_name.append(class_name) | |
print("Uncached texts:", len(uncached_class_name), uncached_class_name, test_class_names) | |
# this is needed to avoid oom, which may happen when num of class is large | |
bs = 128 | |
for idx in range(0, len(test_class_names), bs): | |
text_classifier.append(self.backbone.get_text_classifier(test_class_names[idx:idx+bs], self.device).detach()) | |
if len(text_classifier) > 0: | |
text_classifier = torch.cat(text_classifier, dim=0) | |
text_classifier /= text_classifier.norm(dim=-1, keepdim=True) | |
text_classifier = text_classifier.reshape(text_classifier.shape[0]//len(VILD_PROMPT), len(VILD_PROMPT), text_classifier.shape[-1]).mean(1) | |
text_classifier /= text_classifier.norm(dim=-1, keepdim=True) | |
assert text_classifier.shape[0] == len(uncached_class_name) | |
for idx in range(len(uncached_class_name)): | |
self.demo_all_text_embedding_cache[uncached_class_name[idx]] = text_classifier[idx] | |
text2classifier[uncached_class_name[idx]] = text_classifier[idx] | |
text_classifier = [] | |
for class_names in nontemplated_class_names: | |
for text in class_names: | |
text_classifier.append(text2classifier[text].to(self.device)) | |
text_classifier = torch.stack(text_classifier, dim=0).to(self.device) | |
self.test_text_classifier = text_classifier | |
return self.test_text_classifier, self.test_num_templates | |
def from_config(cls, cfg): | |
backbone = build_backbone(cfg) | |
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape()) | |
# Loss parameters: | |
deep_supervision = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION | |
no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT | |
# loss weights | |
class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT | |
dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT | |
mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT | |
# building criterion | |
matcher = HungarianMatcher( | |
cost_class=class_weight, | |
cost_mask=mask_weight, | |
cost_dice=dice_weight, | |
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS, | |
) | |
weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight} | |
if deep_supervision: | |
dec_layers = cfg.MODEL.MASK_FORMER.DEC_LAYERS | |
aux_weight_dict = {} | |
for i in range(dec_layers - 1): | |
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) | |
weight_dict.update(aux_weight_dict) | |
losses = ["labels", "masks"] | |
criterion = SetCriterion( | |
sem_seg_head.num_classes, | |
matcher=matcher, | |
weight_dict=weight_dict, | |
eos_coef=no_object_weight, | |
losses=losses, | |
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS, | |
oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO, | |
importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO, | |
) | |
#sem_seg_postprocess_before_inference: for panoptic and instance | |
return { | |
"backbone": backbone, | |
"sem_seg_head": sem_seg_head, | |
"criterion": criterion, | |
"num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES, | |
"object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD, | |
"overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD, | |
"train_metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), | |
"test_metadata": MetadataCatalog.get(cfg.DATASETS.TEST[0]), | |
"size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY, | |
"sem_seg_postprocess_before_inference": ( | |
cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE | |
or cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON | |
or cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON | |
or cfg.MODEL.MASK_FORMER.TEST.RECALL_ON | |
), | |
"pixel_mean": cfg.MODEL.PIXEL_MEAN, | |
"pixel_std": cfg.MODEL.PIXEL_STD, | |
# inference | |
"semantic_on": cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON, | |
"instance_on": cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON, | |
"panoptic_on": cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON, | |
"recall_on": cfg.MODEL.MASK_FORMER.TEST.RECALL_ON, | |
"test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE, | |
"geometric_ensemble_alpha": cfg.MODEL.FROZEN_SEG.GEOMETRIC_ENSEMBLE_ALPHA, | |
"geometric_ensemble_beta": cfg.MODEL.FROZEN_SEG.GEOMETRIC_ENSEMBLE_BETA, | |
"ensemble_on_valid_mask": cfg.MODEL.FROZEN_SEG.ENSEMBLE_ON_VALID_MASK, | |
# FrozenSeg | |
"sam_name": cfg.MODEL.SAM_NAME, | |
"mask_pred_alpha": cfg.TEST.SAM_MASK_PRED_ALPHA, | |
'use_sam_masks': cfg.TEST.USE_SAM_MASKS, | |
"pkl_sam_name": cfg.TEST.PKL_SAM_MODEL_NAME | |
} | |
def device(self): | |
return self.pixel_mean.device | |
def preprocess_wo_norm(self, x, resize=(512, 512)): | |
x = x.float() | |
x = F.interpolate( | |
x.unsqueeze(0), | |
size=resize, | |
mode="bilinear", | |
align_corners=False, | |
) | |
return x[0] | |
def forward(self, batched_inputs): | |
""" | |
Args: | |
batched_inputs: a list, batched outputs of :class:`DatasetMapper`. | |
Each item in the list contains the inputs for one image. | |
For now, each item in the list is a dict that contains: | |
* "image": Tensor, image in (C, H, W) format. | |
* "instances": per-region ground truth | |
* Other information that's included in the original dicts, such as: | |
"height", "width" (int): the output resolution of the model (may be different | |
from input resolution), used in inference. | |
Returns: | |
list[dict]: | |
each dict has the results for one image. The dict contains the following keys: | |
* "sem_seg" if semantic_on | |
* "panoptic_seg" if panoptic_on | |
* "instances" if instance_on | |
* "recall_seg" if recall_on | |
""" | |
images = [x["image"].to(self.device) for x in batched_inputs] #raw images 3 1024 1024 | |
if self.sam is None: | |
sam_embedding = None | |
else: | |
images_sam = [(x-self.sam.pixel_mean)/self.sam.pixel_std for x in images] | |
if not self.training: | |
images_sam = ImageList.from_tensors(images_sam, self.size_divisibility) | |
images_sam = images_sam.tensor.to(self.device) | |
images_sam = torch.stack([self.preprocess_wo_norm(x, resize=(1024,1024)) for x in images_sam], dim=0) | |
else: | |
images_sam = torch.stack(images_sam, dim=0).to(self.device) | |
last_embedding, interm_embeddings = self.sam.image_encoder(images_sam) | |
sam_embedding = (last_embedding, interm_embeddings) | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
features = self.backbone(images.tensor) | |
text_classifier, num_templates = self.get_text_classifier() | |
text_classifier = torch.cat([text_classifier, F.normalize(self.void_embedding.weight, dim=-1)], dim=0) | |
features['text_classifier'] = text_classifier | |
features['num_templates'] = num_templates | |
features['sam_embedding'] = sam_embedding | |
features['sam'] = self.sam | |
outputs = self.sem_seg_head(features) | |
if self.training: | |
if "instances" in batched_inputs[0]: | |
gt_instances = [x["instances"].to(self.device) for x in batched_inputs] | |
targets = self.prepare_targets(gt_instances, images) | |
else: | |
targets = None | |
# bipartite matching-based loss | |
losses = self.criterion(outputs, targets) | |
for k in list(losses.keys()): | |
if k in self.criterion.weight_dict: | |
losses[k] *= self.criterion.weight_dict[k] | |
else: | |
# remove this loss if not specified in `weight_dict` | |
losses.pop(k) | |
return losses | |
else: | |
mask_cls_results = outputs["pred_logits"] | |
mask_pred_results = outputs["pred_masks"] | |
clip_feature = features["clip_vis_dense"] | |
mask_for_pooling = F.interpolate(mask_pred_results, size=clip_feature.shape[-2:], | |
mode='bilinear', align_corners=False) | |
if "convnext" in self.backbone.model_name.lower(): | |
pooled_clip_feature = self.mask_pooling(clip_feature, mask_for_pooling) #mask>0 | |
pooled_clip_feature = self.backbone.visual_prediction_forward(pooled_clip_feature) | |
elif "rn" in self.backbone.model_name.lower(): | |
pooled_clip_feature = self.backbone.visual_prediction_forward(clip_feature, mask_for_pooling) | |
else: | |
raise NotImplementedError | |
out_vocab_cls_results = get_classification_logits(pooled_clip_feature, text_classifier, self.backbone.clip_model.logit_scale, num_templates) | |
in_vocab_cls_results = mask_cls_results[..., :-1] # remove void | |
out_vocab_cls_results = out_vocab_cls_results[..., :-1] # remove void | |
out_vocab_cls_probs = out_vocab_cls_results.softmax(-1) | |
in_vocab_cls_results = in_vocab_cls_results.softmax(-1) | |
category_overlapping_mask = self.category_overlapping_mask.to(self.device) | |
if self.ensemble_on_valid_mask: | |
# Only include out_vocab cls results on masks with valid pixels | |
# We empirically find that this is important to obtain reasonable AP/mIOU score with ResNet CLIP models | |
valid_masking = (mask_for_pooling > 0).to(mask_for_pooling).sum(-1).sum(-1) > 0 | |
valid_masking = valid_masking.to(in_vocab_cls_results.dtype).unsqueeze(-1) | |
alpha = torch.ones_like(in_vocab_cls_results) * self.geometric_ensemble_alpha | |
beta = torch.ones_like(in_vocab_cls_results) * self.geometric_ensemble_beta | |
alpha = alpha * valid_masking | |
beta = beta * valid_masking | |
else: | |
alpha = self.geometric_ensemble_alpha | |
beta = self.geometric_ensemble_beta | |
cls_logits_seen = ( | |
(in_vocab_cls_results ** (1 - alpha) * out_vocab_cls_probs**alpha).log() | |
* category_overlapping_mask | |
) | |
cls_logits_unseen = ( | |
(in_vocab_cls_results ** (1 - beta) * out_vocab_cls_probs**beta).log() | |
* (1 - category_overlapping_mask) | |
) | |
cls_results = cls_logits_seen + cls_logits_unseen | |
# This is used to filtering void predictions. | |
is_void_prob = F.softmax(mask_cls_results, dim=-1)[..., -1:] | |
mask_cls_probs = torch.cat([ | |
cls_results.softmax(-1) * (1.0 - is_void_prob), | |
is_void_prob], dim=-1) | |
mask_cls_results = torch.log(mask_cls_probs + 1e-8) | |
mask_pred_results = F.interpolate( | |
mask_pred_results, | |
size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
mode="bilinear", | |
align_corners=False, | |
) | |
del outputs | |
processed_results = [] | |
for mask_cls_result, mask_pred_result, input_per_image, image_size in zip( | |
mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes | |
): | |
height = input_per_image.get("height", image_size[0]) | |
width = input_per_image.get("width", image_size[1]) | |
processed_results.append({}) | |
if self.sem_seg_postprocess_before_inference: # panoptic on | |
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( | |
mask_pred_result, image_size, height, width | |
) | |
mask_cls_result = mask_cls_result.to(mask_pred_result) | |
if self.use_sam_masks: | |
assert not self.training | |
img_id = input_per_image.get("image_id", None) | |
if img_id is None: | |
filename = input_per_image.get('file_name', None) | |
if filename is None: | |
assert NameError, 'No image_id or file_name in input_per_image' | |
elif filename is not None: | |
img_id = filename.split('/')[-1].split('.')[0] | |
with open(f'output/SAM_masks_pred/{self.pkl_sam_name}_{self.sam_mask_dataset_name}/{img_id}.pkl', 'rb') as f: | |
everything_mask = pickle.load(f) | |
sam_mask_pred = [torch.from_numpy(mask['preds']).to(mask_cls_result.device) for mask in everything_mask] | |
if len(sam_mask_pred) == 0: | |
sam_mask_pred = None | |
sam_cls_results = None | |
sam_iou_scores = None | |
else: | |
sam_mask_pred = torch.stack(sam_mask_pred, dim=0) # M, H, W | |
sam_iou_scores = [torch.tensor(mask['predicted_iou']).sigmoid().to(mask_cls_result.device) for mask in everything_mask] | |
sam_iou_scores = torch.stack(sam_iou_scores, dim=0) # M, 1 | |
sam_mask_for_pooling_clip = F.interpolate(sam_mask_pred.unsqueeze(0), size=clip_feature.shape[-2:], mode="nearest") | |
sam_mask_for_pooling_clip = ImageList.from_tensors([sam_mask_for_pooling_clip[0]], self.size_divisibility) | |
if 'convnext' in self.backbone.model_name.lower(): | |
sam_pooled_clip_feature = self.mask_pooling(clip_feature, sam_mask_for_pooling_clip.tensor.to(torch.float32)) | |
sam_pooled_clip_feature = self.backbone.visual_prediction_forward(sam_pooled_clip_feature) | |
sam_cls_results = get_classification_logits(sam_pooled_clip_feature, text_classifier, self.backbone.clip_model.logit_scale, num_templates) | |
elif "rn" in self.backbone.model_name.lower(): | |
sam_pooled_clip_feature = self.backbone.visual_prediction_forward(clip_feature, sam_mask_for_pooling_clip.tensor.to(torch.float32)) | |
sam_cls_results = get_classification_logits(sam_pooled_clip_feature, text_classifier, self.backbone.clip_model.logit_scale, num_templates) # have nan | |
else: | |
print("not support") | |
raise NotImplementedError | |
sam_mask_pred = sam_mask_pred.to(mask_pred_result) | |
sam_cls_results = sam_cls_results.to(mask_cls_result) | |
if not self.sem_seg_postprocess_before_inference: #### For semantic segmentation and recall inference | |
mask_pred_result = mask_pred_result[:, :image_size[0], :image_size[1]] | |
del everything_mask | |
####################################################### | |
if self.recall_on and not self.use_sam_masks: | |
res = retry_if_cuda_oom(self.recall_inference)(mask_pred_result) | |
processed_results[-1]["recall_seg"] = res | |
elif self.recall_on and self.use_sam_masks: | |
if sam_mask_pred.shape[-2:] != mask_pred_result.shape[-2:]: | |
sam_mask_pred = F.interpolate(sam_mask_pred.unsqueeze(0), size=mask_pred_result.shape[-2:], mode="bilinear", align_corners=False)[0] | |
res = retry_if_cuda_oom(self.recall_inference_with_everything)(mask_pred_result, sam_mask_pred) | |
res = retry_if_cuda_oom(sem_seg_postprocess)(res, image_size, height, width) | |
processed_results[-1]["recall_seg"] = res | |
if self.semantic_on: | |
if self.use_sam_masks: | |
if sam_mask_pred.shape[-2:] != mask_pred_result.shape[-2:]: | |
sam_mask_pred = F.interpolate(sam_mask_pred.unsqueeze(0), size=mask_pred_result.shape[-2:], mode="bilinear", align_corners=False)[0] | |
res = self.geo_with_sam_inference(mask_cls_result, mask_pred_result, sam_mask_pred, sam_cls_results, category_overlapping_mask) | |
else: | |
res = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result) | |
if not self.sem_seg_postprocess_before_inference : # for sem seg | |
res = retry_if_cuda_oom(sem_seg_postprocess)(res, image_size, height, width) | |
processed_results[-1]["sem_seg"] = res | |
# panoptic segmentation inference | |
if self.panoptic_on: | |
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result) | |
processed_results[-1]["panoptic_seg"] = panoptic_r | |
# instance segmentation inference | |
if self.instance_on: | |
instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result) | |
processed_results[-1]["instances"] = instance_r | |
return processed_results | |
def prepare_targets(self, targets, images): | |
h_pad, w_pad = images.tensor.shape[-2:] | |
new_targets = [] | |
for targets_per_image in targets: | |
# pad gt | |
gt_masks = targets_per_image.gt_masks | |
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) | |
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks | |
new_targets.append( | |
{ | |
"labels": targets_per_image.gt_classes, | |
"masks": padded_masks, | |
} | |
) | |
return new_targets | |
def resize_feat(self, x, resize_shape): | |
x = F.interpolate( | |
x, | |
size=(resize_shape[0], resize_shape[1]), | |
mode="bilinear", | |
align_corners=False, | |
) | |
return x | |
def recall_inference(self, mask_pred): | |
""" | |
Return: (q, h, w) | |
""" | |
return mask_pred | |
def recall_inference_with_everything(self, mask_pred, sam_mask_pred): | |
""" | |
Return: (q, h, w) | |
""" | |
if sam_mask_pred is None: | |
return self.recall_inference(mask_pred) | |
return torch.cat([mask_pred, sam_mask_pred], dim=0) | |
def semantic_inference(self, mask_cls, mask_pred): | |
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] | |
mask_pred = mask_pred.sigmoid() | |
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred) | |
return semseg | |
def panoptic_inference(self, mask_cls, mask_pred): | |
scores, labels = F.softmax(mask_cls, dim=-1).max(-1) | |
mask_pred = mask_pred.sigmoid() | |
num_classes = len(self.test_metadata.stuff_classes) | |
keep = labels.ne(num_classes) & (scores > self.object_mask_threshold) | |
cur_scores = scores[keep] | |
cur_classes = labels[keep] | |
cur_masks = mask_pred[keep] | |
cur_mask_cls = mask_cls[keep] | |
cur_mask_cls = cur_mask_cls[:, :-1] | |
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks | |
h, w = cur_masks.shape[-2:] | |
panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device) | |
segments_info = [] | |
current_segment_id = 0 | |
if cur_masks.shape[0] == 0: | |
# We didn't detect any mask :( | |
return panoptic_seg, segments_info | |
else: | |
# take argmax | |
cur_mask_ids = cur_prob_masks.argmax(0) | |
stuff_memory_list = {} | |
for k in range(cur_classes.shape[0]): # through all mask queries | |
pred_class = cur_classes[k].item() | |
isthing = pred_class in self.test_metadata.thing_dataset_id_to_contiguous_id.values() | |
mask_area = (cur_mask_ids == k).sum().item() | |
original_area = (cur_masks[k] >= 0.5).sum().item() | |
mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5) | |
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0: | |
if mask_area / original_area < self.overlap_threshold: # 0.8 for coco, 0 for else. | |
continue | |
# merge stuff regions | |
if not isthing: | |
if int(pred_class) in stuff_memory_list.keys(): | |
panoptic_seg[mask] = stuff_memory_list[int(pred_class)] | |
continue | |
else: | |
stuff_memory_list[int(pred_class)] = current_segment_id + 1 | |
current_segment_id += 1 | |
panoptic_seg[mask] = current_segment_id | |
segments_info.append( | |
{ | |
"id": current_segment_id, | |
"isthing": bool(isthing), | |
"category_id": int(pred_class), | |
} | |
) | |
return panoptic_seg, segments_info | |
def geo_with_sam_inference(self, mask_cls, mask_pred, sam_mask_pred, sam_mask_cls, category_overlapping_mask=None): | |
if sam_mask_cls is None: | |
return self.semantic_inference(mask_cls, mask_pred) | |
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] | |
sam_mask_cls = F.softmax(sam_mask_cls, dim=-1)[..., :-1].squeeze(0) # M, C | |
mask_pred = mask_pred.sigmoid() | |
sam_mask_pred = sam_mask_pred.sigmoid() | |
alpha = self.mask_pred_alpha | |
beta = 0. | |
in_mask_cls = mask_cls * category_overlapping_mask.view(1,-1) # (q,c) | |
out_mask_cls = mask_cls * (1 - category_overlapping_mask).view(1,-1) # (q,c) # 0 | |
out_mask_cls = out_mask_cls * (1-alpha) | |
in_mask_cls = in_mask_cls * (1-beta) | |
## MaskEnsemble | |
in_sam_mask_cls = sam_mask_cls * category_overlapping_mask.view(1,-1) # (m,c) | |
out_sam_mask_cls = sam_mask_cls * (1 - category_overlapping_mask).view(1,-1) # (m,c) | |
sam_mask_left = out_sam_mask_cls.max(dim=1).values>0.5 # m | |
out_sam_mask_cls = out_sam_mask_cls[sam_mask_left] # m', c | |
out_sam_mask_pred = sam_mask_pred[sam_mask_left] # m', h, w | |
out_sam_mask_cls = out_sam_mask_cls * alpha | |
in_sam_mask_cls = in_sam_mask_cls * beta | |
in_semseg = torch.einsum("qc,qhw->chw", in_mask_cls, mask_pred) | |
out_semseg = torch.einsum("qc,qhw->chw", out_mask_cls, mask_pred) | |
if not out_sam_mask_cls.shape[0]==0: | |
out_sam_semseg = torch.einsum("mc,mhw->chw", out_sam_mask_cls, out_sam_mask_pred) | |
else: | |
out_sam_semseg = torch.zeros_like(out_semseg) | |
out_semseg = out_semseg + out_sam_semseg | |
semseg = in_semseg + out_semseg | |
return semseg | |
def instance_inference(self, mask_cls, mask_pred): | |
# mask_pred is already processed to have the same shape as original input | |
image_size = mask_pred.shape[-2:] | |
# [Q, K] | |
scores = F.softmax(mask_cls, dim=-1)[:, :-1] | |
# if this is panoptic segmentation | |
if self.panoptic_on: | |
num_classes = len(self.test_metadata.stuff_classes) | |
else: | |
num_classes = len(self.test_metadata.thing_classes) | |
labels = torch.arange(num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1) | |
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False) | |
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False) | |
labels_per_image = labels[topk_indices] | |
topk_indices = topk_indices // num_classes | |
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1) | |
mask_pred = mask_pred[topk_indices] | |
# if this is panoptic segmentation, we only keep the "thing" classes | |
if self.panoptic_on: | |
keep = torch.zeros_like(scores_per_image).bool() | |
for i, lab in enumerate(labels_per_image): | |
keep[i] = lab in self.test_metadata.thing_dataset_id_to_contiguous_id.values() | |
scores_per_image = scores_per_image[keep] | |
labels_per_image = labels_per_image[keep] | |
mask_pred = mask_pred[keep] | |
result = Instances(image_size) | |
# mask (before sigmoid) | |
result.pred_masks = (mask_pred > 0).float() | |
result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4)) | |
# Uncomment the following to get boxes from masks (this is slow) | |
# result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes() | |
# calculate average mask prob | |
mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6) | |
result.scores = scores_per_image * mask_scores_per_image | |
result.pred_classes = labels_per_image | |
return result | |