FrozenSeg / app.py
xichen98cn's picture
Update app.py
30c7dc0 verified
raw
history blame
8.32 kB
import os
import sys
os.system("pip install imutils")
os.system("python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'")
os.system("python frozenseg/modeling/pixel_decoder/ops/setup.py build && pip install -e frozenseg/modeling/pixel_decoder/ops/")
os.system("pip install gdown")
os.system("pip install gradio_client==0.16.1")
os.system("pip install git+https://github.com/cocodataset/panopticapi.git")
import gradio as gr
from detectron2.utils.logger import setup_logger
from contextlib import ExitStack
import numpy as np
import cv2
import torch
import itertools
from detectron2.config import get_cfg
from detectron2.utils.visualizer import ColorMode, random_color
from detectron2.data import MetadataCatalog
from frozenseg import add_maskformer2_config, add_frozenseg_config
from demo.predictor import DefaultPredictor, OpenVocabVisualizer
from PIL import Image
import json
setup_logger()
logger = setup_logger(name="frozenseg")
cfg = get_cfg()
cfg.MODEL.DEVICE='cpu'
add_maskformer2_config(cfg)
add_frozenseg_config(cfg)
cfg.merge_from_file("configs/coco/frozenseg/convnext_large_eval_ade20k.yaml")
cfg.MODEL.WEIGHTS = './frozenseg_ConvNeXt-Large.pth'
cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON = False
cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON = False
cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON = True
predictor = DefaultPredictor(cfg)
title = "FrozenSeg"
article = "<p style='text-align: center'><a href='https://www.arxiv.org/abs/2409.03525' target='_blank'>FrozenSeg</a> | <a href='https://github.com/chenxi52/FrozenSeg' target='_blank'>Github Repo</a></p>"
examples = [
[
"demo/examples/ADE_val_00000001.jpg",
"",
["ADE (150 categories)"],
],
[
"demo/examples/frankfurt_000000_005898_leftImg8bit.png",
"",
["Cityscapes (19 categories)"],
]
]
coco_metadata = MetadataCatalog.get("openvocab_coco_2017_val_panoptic_with_sem_seg")
ade20k_metadata = MetadataCatalog.get("openvocab_ade20k_panoptic_val")
cityscapes_metadata = MetadataCatalog.get("openvocab_cityscapes_fine_panoptic_val")
lvis_classes = open("./frozenseg/data/datasets/lvis_1203_with_prompt_eng.txt", 'r').read().splitlines()
lvis_classes = [x[x.find(':')+1:] for x in lvis_classes]
lvis_colors = list(
itertools.islice(itertools.cycle(coco_metadata.stuff_colors), len(lvis_classes))
)
# rerrange to thing_classes, stuff_classes
coco_thing_classes = coco_metadata.thing_classes
coco_stuff_classes = [x for x in coco_metadata.stuff_classes if x not in coco_thing_classes]
coco_thing_colors = coco_metadata.thing_colors
coco_stuff_colors = [x for x in coco_metadata.stuff_colors if x not in coco_thing_colors]
ade20k_thing_classes = ade20k_metadata.thing_classes
ade20k_stuff_classes = [x for x in ade20k_metadata.stuff_classes if x not in ade20k_thing_classes]
ade20k_thing_colors = ade20k_metadata.thing_colors
ade20k_stuff_colors = [x for x in ade20k_metadata.stuff_colors if x not in ade20k_thing_colors]
cityscapes_stuff_classes = cityscapes_metadata.stuff_classes
cityscapes_stuff_color = cityscapes_metadata.stuff_colors
cityscapes_thing_classes = cityscapes_metadata.thing_classes
cityscapes_thing_color = cityscapes_metadata.thing_colors
def build_demo_classes_and_metadata(vocab, label_list):
extra_classes = []
if vocab:
for words in vocab.split(";"):
extra_classes.append(words)
extra_colors = [random_color(rgb=True, maximum=1) for _ in range(len(extra_classes))]
print("extra_classes:", extra_classes)
demo_thing_classes = extra_classes
demo_stuff_classes = []
demo_thing_colors = extra_colors
demo_stuff_colors = []
if any("COCO" in label for label in label_list):
demo_thing_classes += coco_thing_classes
demo_stuff_classes += coco_stuff_classes
demo_thing_colors += coco_thing_colors
demo_stuff_colors += coco_stuff_colors
if any("ADE" in label for label in label_list):
demo_thing_classes += ade20k_thing_classes
demo_stuff_classes += ade20k_stuff_classes
demo_thing_colors += ade20k_thing_colors
demo_stuff_colors += ade20k_stuff_colors
if any("LVIS" in label for label in label_list):
demo_thing_classes += lvis_classes
demo_thing_colors += lvis_colors
if any("Cityscapes" in label for label in label_list):
demo_thing_classes += cityscapes_thing_classes
demo_thing_colors += cityscapes_thing_color
demo_stuff_classes += cityscapes_stuff_classes
demo_stuff_colors += cityscapes_stuff_color
MetadataCatalog.pop("frozenseg_demo_metadata", None)
demo_metadata = MetadataCatalog.get("frozenseg_demo_metadata")
demo_metadata.thing_classes = demo_thing_classes
demo_metadata.stuff_classes = demo_thing_classes + demo_stuff_classes
demo_metadata.thing_colors = demo_thing_colors
demo_metadata.stuff_colors = demo_thing_colors + demo_stuff_colors
demo_metadata.stuff_dataset_id_to_contiguous_id = {
idx: idx for idx in range(len(demo_metadata.stuff_classes))
}
demo_metadata.thing_dataset_id_to_contiguous_id = {
idx: idx for idx in range(len(demo_metadata.thing_classes))
}
demo_classes = demo_thing_classes + demo_stuff_classes
return demo_classes, demo_metadata
def inference(image_path, vocab, label_list):
logger.info("building class names")
vocab = vocab.replace(", ", ",").replace("; ", ";")
demo_classes, demo_metadata = build_demo_classes_and_metadata(vocab, label_list)
predictor.set_metadata(demo_metadata)
im = cv2.imread(image_path)
outputs = predictor(im)
v = OpenVocabVisualizer(im[:, :, ::-1], demo_metadata, instance_mode=ColorMode.IMAGE)
panoptic_result = v.draw_panoptic_seg(outputs["panoptic_seg"][0].to("cpu"), outputs["panoptic_seg"][1]).get_image()
return Image.fromarray(np.uint8(panoptic_result)).convert('RGB')
with gr.Blocks(title=title,
css="""
#submit {background: #3498db; color: white; border: none; padding: 10px 20px; border-radius: 5px;width: 20%;margin: 0 auto; display: block;}
"""
) as demo:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>" + title + "</h1>")
input_components = []
output_components = []
with gr.Row():
output_image_gr = gr.Image(label="Panoptic Segmentation Output", type="pil")
output_components.append(output_image_gr)
with gr.Row():
with gr.Column(scale=3, variant="panel") as input_component_column:
input_image_gr = gr.Image(type="filepath", label="Input Image")
extra_vocab_gr = gr.Textbox(label="Extra Vocabulary (separated by ;)", placeholder="house;sky")
category_list_gr = gr.CheckboxGroup(
choices=["COCO (133 categories)", "ADE (150 categories)", "LVIS (1203 categories)", "Cityscapes (19 categories)"],
label="Category to use",
)
input_components.extend([input_image_gr, extra_vocab_gr, category_list_gr])
with gr.Column(scale=2):
examples_handler = gr.Examples(
examples=examples,
inputs=[c for c in input_components if not isinstance(c, gr.State)],
outputs=[c for c in output_components if not isinstance(c, gr.State)],
fn=inference,
cache_examples=torch.cuda.is_available(),
examples_per_page=5,
)
with gr.Row():
clear_btn = gr.Button("Clear")
submit_btn = gr.Button("Submit", variant="primary")
gr.Markdown(article)
submit_btn.click(
inference,
input_components,
output_components,
api_name="predict",
scroll_to_output=True,
)
# clear_btn.click(
# None,
# [],
# (input_components + output_components),
# _js=f"""() => {json.dumps(
# [component.cleared_value if hasattr(component, "cleared_value") else None
# for component in input_components + output_components] + (
# [gr.Column(visible=True)]
# )
# + ([gr.Column(visible=False)])
# )}
# """,
# )
demo.launch()