|
import gradio as gr |
|
import plotly.express as px |
|
from pathlib import Path |
|
import pandas as pd |
|
import numpy as np |
|
from langchain_openai import ChatOpenAI |
|
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent |
|
from langchain.agents.agent_types import AgentType |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
import plotly.graph_objects as go |
|
|
|
def explain_df(query, df): |
|
agent = create_pandas_dataframe_agent( |
|
|
|
|
|
|
|
|
|
|
|
ChatGoogleGenerativeAI( |
|
model="gemini-1.5-pro", |
|
temperature=0, |
|
max_tokens=None, |
|
timeout=None, |
|
max_retries=2, |
|
), |
|
df, |
|
verbose=True, |
|
allow_dangerous_code=True, |
|
) |
|
response = agent.invoke(query) |
|
return response['output'] |
|
|
|
|
|
abs_path = Path(__file__).parent |
|
|
|
def parse_model_args(model_args): |
|
if "deltazip" in model_args: |
|
model_args = model_args.split("deltazip")[1] |
|
model_args = model_args.split(",")[0] |
|
model_args = model_args.strip(".") |
|
model_args = model_args.replace(".", "/") |
|
if "espressor/" in model_args: |
|
model_args = model_args.split("espressor/")[1] |
|
model_args = model_args.split(",")[0] |
|
model_args = model_args.strip(".") |
|
model_args = model_args.replace(".", "/",1) |
|
model_args = model_args.split("_")[0] |
|
else: |
|
model_args = model_args.split(",")[0] |
|
model_args = model_args.replace("pretrained=", "") |
|
return model_args |
|
|
|
def parse_model_precision(model_args): |
|
if "espressor" in model_args: |
|
if 'W8A8_int8' in model_args: |
|
precision = 'W8A8_int8' |
|
else: |
|
precision = model_args.split("_")[-1] |
|
else: |
|
precision = "Default" |
|
return precision |
|
|
|
|
|
df = pd.read_csv(str(abs_path / "eval_results.csv")) |
|
perf_df = pd.read_csv(str(abs_path / "perfbench_results.csv")) |
|
|
|
df = df[df['metric'] == 'acc'] |
|
|
|
df = df.drop_duplicates(subset=['model', 'task']) |
|
|
|
|
|
df['model_physical_size'] = df['model_physical_size'].apply(lambda x: x/1024/1024/1024) |
|
|
|
df = df.pivot(index=['model','hf_name','model_physical_size'], columns='task', values='value').reset_index() |
|
|
|
df['precision'] = df['model'].apply(lambda x: x.split(":")[-1]) |
|
df['model'] = df['model'].apply(lambda x: x.split(":")[0]) |
|
df['avg_acc'] = df.filter(like='task_').mean(axis=1) |
|
|
|
df = df.rename(columns=lambda x: x.replace('task_', '')) |
|
numeric_columns = df.select_dtypes(include=[np.number]).columns |
|
|
|
numeric_columns = numeric_columns.drop('model_physical_size') |
|
df[numeric_columns] = (df[numeric_columns]*100).round(2) |
|
df['model_physical_size'] = df['model_physical_size'].round(2) |
|
|
|
full_df = df.merge(perf_df, left_on='hf_name', right_on='hf_name', how='left') |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(""" |
|
# π₯ Efficient LLM Leaderboard |
|
""") |
|
with gr.Tabs(): |
|
with gr.TabItem("Leaderboard"): |
|
|
|
task_options = [col for col in df.columns if col not in ['model','hf_name','model_physical_size', 'precision']] |
|
task_options.append("plot_pareto") |
|
with gr.Row(): |
|
|
|
selected_tasks = gr.CheckboxGroup(choices=task_options, label="Select Tasks") |
|
with gr.Row(): |
|
accuracy_plot = gr.Plot(label="Accuracy Plot") |
|
line_plot = gr.Plot(label="Average Accuracy vs Model Size") |
|
with gr.Row(): |
|
throughput_line_plot = gr.Plot(label="Throughput vs Average Accuracy") |
|
latency_line_plot = gr.Plot(label="Latency vs Average Accuracy") |
|
with gr.Row(): |
|
data_table = gr.Dataframe(value=df, label="Result Table") |
|
|
|
def update_outputs(selected_tasks): |
|
if not selected_tasks: |
|
return df[['model', 'precision']], None, None |
|
plot_pareto=False |
|
if "plot_pareto" in selected_tasks: |
|
plot_pareto = True |
|
selected_tasks.remove("plot_pareto") |
|
filtered_df = df[['model', 'precision', 'model_physical_size','hf_name'] + selected_tasks] |
|
|
|
filtered_df['avg_accuracy'] = filtered_df[selected_tasks].mean(axis=1) |
|
|
|
bar_fig = px.bar(filtered_df, x='model', y='avg_accuracy', color='precision', barmode='group') |
|
line_fig = px.line(filtered_df, x='model_physical_size', y='avg_accuracy', color='model', symbol='precision') |
|
pareto_df = filtered_df.sort_values('model_physical_size') |
|
pareto_df = pareto_df.loc[pareto_df['avg_accuracy'].cummax().drop_duplicates().index] |
|
|
|
if plot_pareto: |
|
line_fig.add_trace(go.Scatter( |
|
x=pareto_df['model_physical_size'], |
|
y=pareto_df['avg_accuracy'], |
|
mode='lines+markers', |
|
name='Pareto Frontier' |
|
)) |
|
|
|
|
|
bar_fig.update_layout(title=f'tasks: {", ".join(selected_tasks)}') |
|
line_fig.update_layout(title=f'tasks: {", ".join(selected_tasks)}') |
|
with_perf_df = filtered_df.merge(perf_df, left_on='hf_name', right_on='hf_name', how='left') |
|
throughput_line_fig = px.line(with_perf_df, x='output_throughput', y='avg_accuracy', color='model', symbol='precision') |
|
latency_line_fig = px.line(with_perf_df, x="avg_e2e_latency", y='avg_accuracy', color='model', symbol='precision') |
|
|
|
pareto_df = with_perf_df.sort_values('avg_e2e_latency') |
|
pareto_df = pareto_df.loc[pareto_df['avg_accuracy'].cummax().drop_duplicates().index] |
|
if plot_pareto: |
|
latency_line_fig.add_trace(go.Scatter( |
|
x=pareto_df['avg_e2e_latency'], |
|
y=pareto_df['avg_accuracy'], |
|
mode='lines+markers', |
|
name='Pareto Frontier' |
|
)) |
|
return with_perf_df, bar_fig, line_fig, throughput_line_fig, latency_line_fig |
|
|
|
selected_tasks.change( |
|
fn=update_outputs, |
|
inputs=selected_tasks, |
|
outputs=[data_table, accuracy_plot, line_plot, throughput_line_plot, latency_line_plot] |
|
) |
|
with gr.TabItem("Find Model"): |
|
query_input = gr.Textbox(label="Enter your query", placeholder="Enter your query here") |
|
response_output = gr.Textbox(label="Response", interactive=False) |
|
query_input.submit( |
|
fn=lambda query: explain_df(query, df), |
|
inputs=query_input, |
|
outputs=response_output |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True) |