import gradio as gr import pandas as pd from plotly import graph_objects as go import plotly.io as pio import plotly.express as px # @TODO: Add a custom template to the plotly figure """ pio.templates["custom"] = go.layout.Template() pio.templates["custom"].layout = dict( plot_bgcolor="#bde5ec", paper_bgcolor="#bbd5da" ) # Set the default theme to "plotly_dark" pio.templates.default = "custom" """ def process_dataset(): """ Process the dataset and perform the following operations: 1. Read the file_counts_and_sizes, repo_by_size_df, unique_files_df, and file_extensions data from parquet files. 2. Convert the total size to petabytes and format it to two decimal places. 3. Capitalize the 'type' column in the file_counts_and_sizes dataframe. 4. Rename the columns in the file_counts_and_sizes dataframe. 5. Sort the file_counts_and_sizes dataframe by total size in descending order. 6. Drop rows with missing values in the 'extension' column of the file_extensions dataframe. 7. Return the repo_by_size_df, unique_files_df, file_counts_and_sizes, and file_extensions dataframes. """ file_counts_and_sizes = pd.read_parquet( "hf://datasets/xet-team/lfs-analysis-data/transformed/file_counts_and_sizes.parquet" ) repo_by_size_df = pd.read_parquet( "hf://datasets/xet-team/lfs-analysis-data/transformed/repo_by_size.parquet" ) unique_files_df = pd.read_parquet( "hf://datasets/xet-team/lfs-analysis-data/transformed/repo_by_size_file_dedupe.parquet" ) file_extensions = pd.read_parquet( "hf://datasets/xet-team/lfs-analysis-data/transformed/file_extensions.parquet" ) # read the file_extensions_by_month.parquet file file_extensions_by_month = pd.read_parquet( "hf://datasets/xet-team/lfs-analysis-data/transformed/file_extensions_by_month.parquet" ) # drop any nas file_extensions_by_month = file_extensions_by_month.dropna() file_counts_and_sizes["type"] = file_counts_and_sizes["type"].str.capitalize() # update the column name to 'total size (PB)' file_counts_and_sizes = file_counts_and_sizes.rename( columns={ "type": "Repository Type", "num_files": "Number of Files", "total_size": "Total Size (PBs)", } ) file_counts_and_sizes = file_counts_and_sizes.drop(columns=["Number of Files"]) # sort the dataframe by total size in descending order file_counts_and_sizes = file_counts_and_sizes.sort_values( by="Total Size (PBs)", ascending=False ) # drop nas from the extension column file_extensions = file_extensions.dropna(subset=["extension"]) return ( repo_by_size_df, unique_files_df, file_counts_and_sizes, file_extensions, file_extensions_by_month, ) def cumulative_growth_df(_df): # Sort by date to ensure correct cumulative sum _df = _df.sort_values(by="date") # Pivot the dataframe to get the totalsize pivot_df = _df.pivot_table( index="date", columns="type", values="totalsize", aggfunc="sum" ).fillna(0) # Calculate cumulative sum cumulative_df = pivot_df.cumsum() return cumulative_df def compare_last_10_months(_cumulative_df, _cumulative_df_compressed): last_10_months = _cumulative_df.tail(10).copy() last_10_months["total"] = last_10_months.sum(axis=1) last_10_months["total_change"] = last_10_months["total"].diff() last_10_months["compressed_change"] = ( _cumulative_df_compressed.tail(10).sum(axis=1).diff() ) last_10_months["savings"] = ( last_10_months["total_change"] - last_10_months["compressed_change"] ) last_10_months = format_dataframe_size_column( last_10_months, ["total_change", "compressed_change", "savings"] ) last_10_months["date"] = _cumulative_df.tail(10).index # drop the dataset, model, and space last_10_months = last_10_months.drop(columns=["model", "space", "dataset"]) # pretiffy the date column to not have 00:00:00 last_10_months["date"] = last_10_months["date"].dt.strftime("%Y-%m") # drop the first row last_10_months = last_10_months.drop(last_10_months.index[0]) # order the columns date, total, total_change last_10_months = last_10_months[ ["date", "total_change", "compressed_change", "savings"] ] # rename the columns last_10_months = last_10_months.rename( columns={ "date": "Date", "total_change": "Month-to-Month Growth (PBs)", "compressed_change": "Growth with File-Level Deduplication (PBs)", "savings": "Dedupe Savings (PBs)", } ) return last_10_months def tabular_analysis(repo_sizes, cumulative_df, cumulative_df_compressed): # create a new column in the repository sizes dataframe for "compressed size" and set it to empty atif rist repo_sizes["Compressed Size (PBs)"] = "" repo_sizes["Dedupe Savings (PBs)"] = "" for column in cumulative_df.columns: cum_repo_size = cumulative_df[column].iloc[-1] comp_repo_size = cumulative_df_compressed[column].iloc[-1] repo_size_diff = cum_repo_size - comp_repo_size repo_sizes.loc[ repo_sizes["Repository Type"] == column.capitalize(), "Compressed Size (PBs)", ] = comp_repo_size repo_sizes.loc[ repo_sizes["Repository Type"] == column.capitalize(), "Dedupe Savings (PBs)" ] = repo_size_diff # add a row that sums the total size and compressed size repo_sizes.loc["Total"] = repo_sizes.sum() repo_sizes.loc["Total", "Repository Type"] = "Total" return repo_sizes def cumulative_growth_plot_analysis(cumulative_df, cumulative_df_compressed): """ Calculates the cumulative growth of models, spaces, and datasets over time and generates a plot and dataframe from the analysis. Args: df (DataFrame): The input dataframe containing the data. df_compressed (DataFrame): The input dataframe containing the compressed data. Returns: tuple: A tuple containing two elements: - fig (Figure): The Plotly figure showing the cumulative growth of models, spaces, and datasets over time. - last_10_months (DataFrame): The last 10 months of data showing the month-to-month growth in petabytes. Raises: None """ # Create a Plotly figure fig = go.Figure() # Define a color map for each type color_map = { "model": px.colors.qualitative.Alphabet[3], "space": px.colors.qualitative.Alphabet[2], "dataset": px.colors.qualitative.Alphabet[9], } # Add a scatter trace for each type for column in cumulative_df.columns: fig.add_trace( go.Scatter( x=cumulative_df.index, y=cumulative_df[column] / 1e15, # Convert to petabytes mode="lines", name=column.capitalize(), line=dict(color=color_map.get(column, "black")), # Use color map ) ) # Add a scatter trace for each type for column in cumulative_df_compressed.columns: fig.add_trace( go.Scatter( x=cumulative_df_compressed.index, y=cumulative_df_compressed[column] / 1e15, # Convert to petabytes mode="lines", name=column.capitalize() + " (File-Level Deduplication)", line=dict(color=color_map.get(column, "black"), dash="dash"), ) ) # Update layout fig.update_layout( title="Cumulative Growth of Models, Spaces, and Datasets Over Time
Dotted lines represent growth with file-level deduplication", xaxis_title="Date", yaxis_title="Cumulative Size (PBs)", legend_title="Type", yaxis=dict(tickformat=".2f"), # Format y-axis labels to 2 decimal places ) return fig def plot_total_sum(by_type_arr): # Sort the array by size in decreasing order by_type_arr = sorted(by_type_arr, key=lambda x: x[1]) # Create a Plotly figure fig = go.Figure() # Add a bar trace for each type for type, size in by_type_arr: fig.add_trace( go.Bar( x=[type], y=[size / 1e15], # Convert to petabytes name=type.capitalize(), ) ) # Update layout fig.update_layout( title="Top 20 File Extensions by Total Size (in PBs)", xaxis_title="File Extension", yaxis_title="Total Size (PBs)", yaxis=dict(tickformat=".2f"), # Format y-axis labels to 2 decimal places colorway=px.colors.qualitative.Alphabet, # Use Plotly color palette ) return fig def filter_by_extension_month(_df, _extension): """ Filters the given DataFrame (_df) by the specified extension and creates a line plot using Plotly. Parameters: _df (DataFrame): The input DataFrame containing the data. extension (str): The extension to filter the DataFrame by. If None, no filtering is applied. Returns: fig (Figure): The Plotly figure object representing the line plot. """ # Filter the DataFrame by the specified extension or extensions if _extension is None: pass elif len(_extension) == 0: pass else: _df = _df[_df["extension"].isin(_extension)].copy() # Convert year and month into a datetime column and sort by date _df["date"] = pd.to_datetime(_df[["year", "month"]].assign(day=1)) _df = _df.sort_values(by="date") # Pivot the DataFrame to get the total size for each extension and make this plotable as a time series pivot_df = _df.pivot_table( index="date", columns="extension", values="total_size" ).fillna(0) # Plot!! fig = go.Figure() for i, column in enumerate(pivot_df.columns): if column != "": fig.add_trace( go.Scatter( x=pivot_df.index, y=pivot_df[column] / 1e12, # Convert to TBs mode="lines", name=column, line=dict(color=px.colors.qualitative.Alphabet[i]), ) ) # Update layout fig.update_layout( title="Monthly Additions of LFS Files by Extension (in TBs)", xaxis_title="Date", yaxis_title="Size (TBs)", legend_title="Type", yaxis=dict(tickformat=".2f"), # Format y-axis labels to 2 decimal places ) return fig def area_plot_by_extension_month(_df): _df["total_size"] = _df["total_size"] / 1e15 _df["date"] = pd.to_datetime(_df[["year", "month"]].assign(day=1)) # make a plotly area chart with data and extension fig = px.area(_df, x="date", y="total_size", color="extension") # Update layout fig.update_layout( title="File Extension Monthly Additions (in PBs) Over Time", xaxis_title="Date", yaxis_title="Size (PBs)", legend_title="Type", # format y-axis to be PBs (currently bytes) with two decimal places yaxis=dict(tickformat=".2f"), ) return fig ## Utility functions def div_px(height): """ Returns a string representing a div element with the specified height in pixels. """ return f"
" def format_dataframe_size_column(_df, column_names): """ Format the size to petabytes and return the formatted size. """ for column_name in column_names: _df[column_name] = _df[column_name] / 1e15 _df[column_name] = _df[column_name].map("{:.2f}".format) return _df def month_year_to_date(_df): """ Converts the 'year' and 'month' columns in the given DataFrame to a single 'date' column. """ _df["date"] = pd.to_datetime(_df[["year", "month"]].assign(day=1)) return _df # Create a gradio blocks interface and launch a demo with gr.Blocks() as demo: df, file_df, by_repo_type, by_extension, by_extension_month = process_dataset() # Convert year and month into a datetime column df = month_year_to_date(df) df_compressed = month_year_to_date(file_df) # Calculate the cumulative growth of models, spaces, and datasets over time cumulative_df = cumulative_growth_df(df) cumulative_df_compressed = cumulative_growth_df(df_compressed) last_10_months = compare_last_10_months(cumulative_df, cumulative_df_compressed) by_repo_type = tabular_analysis( by_repo_type, cumulative_df, cumulative_df_compressed ) # get the figure for the cumulative growth plot and the last 10 months dataframe fig = cumulative_growth_plot_analysis(cumulative_df, cumulative_df_compressed) # Add top level heading and introduction text gr.Markdown("# Git LFS Usage across the Hub") gr.Markdown( "Ever wonder what the Hugging Face Hub holds? This is the space for you!" ) gr.Markdown( "The Hub stores all files using a combination of [Gitaly](https://gitlab.com/gitlab-org/gitaly) (small files) on EBS and [Git LFS](https://git-lfs.com/) (large files > 10MB) on S3. As part of the [Xet team](https://huggingface.co./xet-team), one of our goals is to improve Hub storage and transfer efficiency, and understanding how and what things are currently stored helps us establish a baseline. This analysis uses a snapshot of the Hub's Git LFS usage from March 2022 - September 2024, which accounts for 82% of all Hub storage, and we plan to update it monthly to track trends. We're starting with metrics around raw storage by repository type and size/count by file extension - if you're interested in other metrics, drop your suggestions in our [discussions](https://huggingface.co./spaces/xet-team/lfs-analysis/discussions)!" ) gr.HTML(div_px(25)) # Cumulative growth analysis gr.Markdown("## Storage by Repository Type") gr.Markdown( "The chart below shows the growth of Git LFS storage usage by repository type since March 2022.) gr.Plot(fig) gr.HTML(div_px(5)) # @TODO Talk to Allison about variant="panel" with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Current Storage Usage") gr.Markdown( "As of September 20, 2024, total files stored in Git LFS summed to almost 29 PB. To put this into perspective, the last [Common Crawl](https://commoncrawl.org/) download was [451 TBs](https://github.com/commoncrawl/cc-crawl-statistics/blob/master/stats/crawler/CC-MAIN-2024-38.json#L31) - the Hub stores the equivalent of **64 Common Crawls** 🤯.") with gr.Column(scale=3): # Convert the total size to petabytes and format to two decimal places by_repo_type = format_dataframe_size_column( by_repo_type, ["Total Size (PBs)", "Compressed Size (PBs)", "Dedupe Savings (PBs)"], ) gr.Dataframe(by_repo_type) gr.HTML(div_px(25)) # File Extension analysis gr.Markdown("## Large Files Stored by File Extension") gr.Markdown( "What types of files are stored on the Hub? The Xet team's backend architecture allows for storage optimizations by file type, so seeing the breakdown of the most popular stored file types helps to prioritize our roadmap. The following sections filter the analysis to the top 20 file extensions stored (by bytes) using Git LFS." ) gr.Markdown( "[Safetensors](https://huggingface.co./docs/safetensors/en/index) is quickly becoming the defacto standard on the Hub for storing tensor files, accounting for over 7PBs (25%) of LFS storage. [GGUF (GPT-Generated Unified Format)](https://huggingface.co./docs/hub/gguf), a format for storing tensor files with a different set of optimizations, is also on the rise, accounting for 3.2 PBs (11%) of LFS storage." ) # Get the top 10 file extensions by size by_extension_size = by_extension.sort_values(by="size", ascending=False).head(22) # make a bar chart of the by_extension_size dataframe gr.Plot(plot_total_sum(by_extension_size[["extension", "size"]].values)) # drop the unnamed: 0 column by_extension_size = by_extension_size.drop(columns=["Unnamed: 0"]) # average size by_extension_size["Average File Size (MBs)"] = ( by_extension_size["size"].astype(float) / by_extension_size["count"] ) by_extension_size["Average File Size (MBs)"] = ( by_extension_size["Average File Size (MBs)"] / 1e6 ) by_extension_size["Average File Size (MBs)"] = by_extension_size[ "Average File Size (MBs)" ].map("{:.2f}".format) # format the size column by_extension_size = format_dataframe_size_column(by_extension_size, ["size"]) # Rename the other columns by_extension_size = by_extension_size.rename( columns={ "extension": "File Extension", "count": "Number of Files", "size": "Total Size (PBs)", } ) gr.HTML(div_px(5)) gr.Markdown( "This tabular view shows the same top 20 file extensions by total stored size, number of files, and average file size." ) gr.Dataframe(by_extension_size) gr.HTML(div_px(5)) gr.Markdown("### Storage Growth by File Extension (Monthly PBs Added)") gr.Markdown( "The following area chart shows the number of bytes added to LFS storage each month, faceted by file extension." ) gr.Plot(area_plot_by_extension_month(by_extension_month)) gr.HTML(div_px(5)) gr.Markdown( "To dig deeper, use the dropdown to filter the area chart by file extension." ) # build a dropdown using the unique values in the extension column extension = gr.Dropdown( choices=by_extension["extension"].unique().tolist(), multiselect=True, label="File Extension", ) _by_extension_month = gr.State(by_extension_month) gr.Plot(filter_by_extension_month, inputs=[_by_extension_month, extension]) gr.HTML(div_px(25)) # Optimizations gr.Markdown("## Optimization 1: File-level Deduplication") gr.Markdown( "The first improvement we can make to Hub storage is to add file-level deduplication. Since forking any Hub repository makes copies of the files, a scan of existing files unsurprisingly shows that some files match exactly. The following chart shows the storage growth chart from above with additional dashed lines showing the potential savings from deduplicating at the file level." ) gr.Plot(fig) gr.HTML(div_px(5)) # @TODO Talk to Allison about variant="panel" with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Current Storage Usage + File-level Deduplication") gr.Markdown( "This simple change to the storage backend will save 3.24 PBs (the equivalent of 7.2 Common Crawls)." ) with gr.Column(scale=3): # Convert the total size to petabytes and format to two decimal places by_repo_type = format_dataframe_size_column( by_repo_type, ["Total Size (PBs)", "Deduplicated Size (PBs)", "Dedupe Savings (PBs)"], ) gr.Dataframe(by_repo_type) gr.HTML(div_px(5)) with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Month-to-Month Growth + File-level Deduplication") gr.Markdown( "This table shows month-to-month growth in model, dataset, and space storage. In 2024, the Hub has averaged nearly **2.3 PBs uploaded to Git LFS per month**. Deduplicating at the file level saves nearly 225 TB (half a Common Crawl) monthly." ) with gr.Column(scale=3): gr.Dataframe(last_10_months) # launch the dang thing demo.launch()