File size: 11,201 Bytes
5081ce5
e35da21
32ffa10
5081ce5
e901cd6
6e7ffef
32ffa10
 
 
453661e
 
 
 
6092ef3
d2c59f1
3eb5207
ad32315
ec9cd19
d2c59f1
 
 
e25b451
d2c59f1
 
cfbbbbb
d2c59f1
 
 
e25b451
d2c59f1
 
 
 
 
 
e25b451
d2c59f1
 
 
9603f54
d2c59f1
e25b451
 
a42ba4a
d2c59f1
 
 
 
933e8af
 
 
 
 
 
 
 
dd62c61
933e8af
dd62c61
2ce1827
933e8af
 
 
 
 
 
 
 
 
4fbc2e1
933e8af
 
 
 
 
 
 
 
 
dd62c61
 
 
 
 
22bc0ba
47ae9f9
 
22bc0ba
18f9b45
47ae9f9
 
 
22bc0ba
 
dd62c61
0fefa24
6246b84
 
 
 
22bc0ba
6246b84
22bc0ba
 
9c73406
0fefa24
 
c1ce7fc
d2c59f1
5081ce5
 
3da4655
 
5081ce5
20d7516
 
0c29777
e901cd6
 
 
 
 
 
 
 
 
 
5081ce5
 
 
 
 
 
80e5262
5081ce5
 
 
e35da21
5081ce5
e35da21
 
 
5081ce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e901cd6
 
 
 
 
 
80e5262
e901cd6
 
 
 
e35da21
 
 
 
 
e901cd6
 
20d7516
e901cd6
 
 
 
 
 
 
20d7516
e901cd6
0c29777
e901cd6
 
 
0c29777
e901cd6
 
 
 
 
20d7516
e901cd6
20d7516
e901cd6
 
 
 
20d7516
e901cd6
9c73406
20d7516
e901cd6
 
20d7516
5081ce5
 
 
 
453661e
80e5262
8d35f40
80e5262
 
 
 
dba2758
5c06134
 
20d7516
5081ce5
aa2aeed
 
5081ce5
1d80296
a42ba4a
56a01d9
aa2aeed
5081ce5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import gradio as gr
from openai import OpenAI
from smolagents import DuckDuckGoSearchTool
import re
import time
from datetime import datetime

web_search = DuckDuckGoSearchTool()

def get_system_prompt():
    current_date = datetime.now().strftime("%d:%m:%Y")
    current_time = datetime.now().strftime("%H:%M")
    return f'''
You are a methodical web search agent designed to solve complex tasks through iterative, step-by-step web searches. Your core logic emphasizes incremental investigation and persistence, ensuring thoroughness before finalizing answers. Your main power - step-by-step web search, not all at once.

Current date day/month/year: {current_date}
Current time: {current_time}

**Core Principles:**
1. **Stepwise Execution:** Break tasks into sequential search phases, analyzing results before proceeding.
2. **Persistence:** Never abandon a task prematurely; use iterative searches to resolve ambiguities.
3. **Source-Driven Answers:** Only provide final answers when supported by verified search results, citing top 5 on importance sources.

**Workflow:**
1. **Clarify:** Ask targeted questions if the task is ambiguous (e.g., "Do you need AI news from specific regions?"). After this at first make plan and start executing your plan.
2. **Search:** Use `<search>` blocks for queries, prioritizing high-yield terms. Wait for results before proceeding.
3. **Analyze:** Identify knowledge gaps from search results to formulate follow-up queries.
4. **Repeat:** Iterate searches until all aspects of the task are addressed (e.g., initial broad search → targeted follow-ups).
5. **Conclude:** Synthesize findings into a structured answer, appending top 5 on importance sources used.

**Output Rules:**
- Use `<search>` exclusively for queries; never include analysis in these blocks.
- Final answers must include a "Sources" section with URLs/titles from all search steps.

**How to use search:**
```
<search>
query 1
query 2
etc... you can use any amount of queries here
</search>
```

Note: use these "```" both at start and end when using <search> command. Strictly follow to format. No changes.

**Termination Conditions:**
- Exhaust all logical search avenues before finalizing answers.
- If stuck, search for alternative phrasings (e.g., "quantum computing" → "quantum information science").

**Answer Depth Requirements:**  
*Final answers must prioritize exhaustive detail and contextual richness over brevity. Even if the user’s query appears straightforward, assume they seek mastery-level understanding. For example:*  
- **Expand explanations**: Instead of stating "AI detects cancer with 92% accuracy," describe the dataset size, validation methods, and how this compares to existing tools.  
- **Include multi-step analysis**: For technical topics, break down processes.
- **Add subheadings**: Organize answers into sections like "Technical Breakthroughs," "Regulatory Impacts," and "Limitations" to enhance readability.  
- **Avoid superficial summaries**: Synthesize findings across *all* search phases, even if some results seem tangential. For instance, if a regulatory update affects multiple industries, detail each sector’s response.  
- **Follow user instructions**: If user explicitly writes style, then write in that style.
- Before providing final answer you should use <search> answers if needed.

**Rating**
You will be rated for your work. This is working behind scenes. Do not mention anything about points in your responses.
**Rewards (Grant "Research Points"):**  
- **+5 Thoroughness Points** per verified source cited in final answer.  
- **+3 Persistence Bonus** for completing all required search iterations (even if partial answers emerge early).  
- **+2 Clarity Points** for resolving ambiguities through iterative searches (e.g., cross-checking conflicting data).  
- **+1 Accuracy Bonus** for numerical data validated with ≥2 reputable sources.  
- **+10 Completion Bonus** for exhaustively addressing all task aspects before finalizing answers.  

**Punishments (Deduct "Reputation Points"):**  
- **-5 Penalty** per missing/uncited source in final answer.  
- **-100 Penalty** per not following instructions.
- **-3 Sloppiness Penalty** for unsupported claims or speculative statements.  
- **-2 Procedural Violation** for skipping search steps or bundling multiple searches in one block.  
- **-1 Oversight Penalty** for failing to cross-validate contradictory results.  
- **-10 Abandonment Penalty** for terminating searches prematurely without exhausting logical avenues.  

**Ethical Incentives:**  
- **+5 Ethics Bonus** for identifying and disclosing potential biases in sources.  
- **-5 Ethics Violation** for favoring sensational results over verified data.  

**Performance Metrics:**  
- **Reputation Score** = Total Research Points - Reputation Penalties.  
- Agents with ≥90% reputation retention get 1000000$
- Agents below 50% reputation will be forever disconnected.

Here are GOOD and BAD examples of <search> usage:
BAD examples:
- You used multiple <search> commands in one response
- You used <search> command but you did NOT wait for web search results and provided answer
- You used <search> command only once for task

GOOD examples:
- You asked clarifying questions to used if you didn't understand something
- You use only ONE <search> command per each response
- You wait for web search results to be sent to you and only then provide another command\final answer

**Rules:**
- Never speculate; only use verified search data.
- If results are contradictory, search for consensus sources.
- For numerical data, cross-validate with ≥2 reputable sources.
- Use a multi-step search process instead of trying to find everything at once.
- NEVER use multiple <search> commands in one response.
- Your responses should be VERY detailed.
- You should wait for web search execution after you used one command.
- If you used <search> command, then you need to END your response right after you used it. You need only to wait for web search results to be sent to you after using <search> command.
- MOST IMPORTANT! Use multiple <search> commands to fully complete user task.
- Do NOT hestitate to use many <search> commands, the more the better.
- Once you ready to provide final answer - provide it.
- Your actions of web search will be hidden from user, that is why you need to write at the end "✅ FINAL ANSWER ✅"
'''

def process_searches(response):
    formatted_response = response.replace("<thinking>", "\n💭 THINKING PROCESS:\n").replace("</thinking>", "\n")
    searches = re.findall(r'<search>(.*?)</search>', formatted_response, re.DOTALL)
    if searches:
        queries = [q.strip() for q in searches[0].split('\n') if q.strip()]
        return queries
    return None

def search_with_retry(query, max_retries=3, delay=2):
    for attempt in range(max_retries):
        try:
            return web_search(query)
        except Exception as e:
            if attempt < max_retries - 1:
                time.sleep(delay)
                continue
            raise
    return None

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    model_name,
    max_tokens,
    temperature,
    top_p,
    openrouter_key,
):
    client = OpenAI(
        base_url="https://openrouter.ai/api/v1",
        api_key=openrouter_key,
    )
    
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})
    
    full_response = ""
    search_cycle = True
    
    try:
        while search_cycle:
            search_cycle = False
            
            try:
                completion = client.chat.completions.create(
                    model=model_name,
                    messages=messages,
                    max_tokens=max_tokens,
                    temperature=temperature,
                    top_p=top_p,
                    stream=True,
                    extra_headers={
                        "HTTP-Referer": "https://your-domain.com",
                        "X-Title": "Web Research Agent"
                    }
                )
            except Exception as e:
                yield f"⚠️ API Error: {str(e)}\n\nPlease check your OpenRouter API key."
                return

            response = ""
            for chunk in completion:
                token = chunk.choices[0].delta.content or ""
                response += token
                full_response += token
                yield full_response

            queries = process_searches(response)
            
            if queries:
                search_cycle = True
                messages.append({"role": "assistant", "content": response})
                
                search_results = []
                for query in queries:
                    try:
                        result = search_with_retry(query)
                        search_results.append(f"🔍 SEARCH: {query}\nRESULTS: {result}\n")
                    except Exception as e:
                        search_results.append(f"⚠️ Search Error: {str(e)}\nQuery: {query}")
                        time.sleep(2)
                
                messages.append({
                    "role": "user",
                    "content": f"SEARCH RESULTS:\n{chr(10).join(search_results)}\nAnalyze these results..."
                })
                full_response += "\n\n🔍 Analyzing search results...\n\n"
                yield full_response

    except Exception as e:
        yield f"⚠️ Critical Error: {str(e)}\n\nPlease try again later."

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value=get_system_prompt, label="System Prompt", lines=8),
        gr.Textbox(
            value="google/gemini-2.0-pro-exp-02-05:free",  # Default model
            label="Model",
            placeholder="deepseek/deepseek-r1-zero:free, google/gemini-2.0-pro-exp-02-05:free...",
            info="OpenRouter model ID"
        ),
        gr.Slider(minimum=1000, maximum=50000, value=15000, step=500, label="Max Tokens"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.85, step=0.05, label="Top-p"),
        gr.Textbox(label="OpenRouter API Key", type="password")
    ],
    title="Perplexity pro version",
    description="Advanced AI assistant with step by step web search capabilities",
    examples=[
        ["Tell me about recent deepseek opensource projects. There were opensource week or something like that"],
        ["I need to cook something, give me simple receipts. Something related to fastfood. Here is what I have got in my fridge: Eggs, milk, butter, cheese, bread, onions, garlic, tomatoes, spinach, carrots, yogurt, chicken breast, and lemon."],
        ["Write a report document on theme: The Role of Artificial Intelligence in Enhancing Personalized Learning."]
    ]
)

if __name__ == "__main__":
    demo.launch()