GenMM_bak / utils /base.py
wyysf's picture
Duplicate from wyysf/GenMM-test
98e2c81
raw
history blame
4.56 kB
import os
import os.path as osp
import sys
import time
import yaml
import imageio
import random
import shutil
import random
import numpy as np
import torch
from tqdm import tqdm
import matplotlib.pyplot as plt
class ConfigParser():
def __init__(self, args):
"""
class to parse configuration.
"""
args = args.parse_args()
self.cfg = self.merge_config_file(args)
# set random seed
self.set_seed()
def __str__(self):
return str(self.cfg.__dict__)
def __getattr__(self, name):
"""
Access items use dot.notation.
"""
return self.cfg.__dict__[name]
def __getitem__(self, name):
"""
Access items like ordinary dict.
"""
return self.cfg.__dict__[name]
def merge_config_file(self, args, allow_invalid=True):
"""
Load json config file and merge the arguments
"""
assert args.config is not None
with open(args.config, 'r') as f:
cfg = yaml.safe_load(f)
if 'config' in cfg.keys():
del cfg['config']
f.close()
invalid_args = list(set(cfg.keys()) - set(dir(args)))
if invalid_args and not allow_invalid:
raise ValueError(f"Invalid args {invalid_args} in {args.config}.")
for k in list(cfg.keys()):
if k in args.__dict__.keys() and args.__dict__[k] is not None:
print('=========> overwrite config: {} = {}'.format(k, args.__dict__[k]))
del cfg[k]
args.__dict__.update(cfg)
return args
def set_seed(self):
''' set random seed for random, numpy and torch. '''
if 'seed' not in self.cfg.__dict__.keys():
return
if self.cfg.seed is None:
self.cfg.seed = int(time.time()) % 1000000
print('=========> set random seed: {}'.format(self.cfg.seed))
# fix random seeds for reproducibility
random.seed(self.cfg.seed)
np.random.seed(self.cfg.seed)
torch.manual_seed(self.cfg.seed)
torch.cuda.manual_seed(self.cfg.seed)
def save_codes_and_config(self, save_path):
"""
save codes and config to $save_path.
"""
cur_codes_path = osp.dirname(osp.dirname(os.path.abspath(__file__)))
if os.path.exists(save_path):
shutil.rmtree(save_path)
shutil.copytree(cur_codes_path, osp.join(save_path, 'codes'), \
ignore=shutil.ignore_patterns('*debug*', '*data*', '*output*', '*exps*', '*.txt', '*.json', '*.mp4', '*.png', '*.jpg', '*.bvh', '*.csv', '*.pth', '*.tar', '*.npz'))
with open(osp.join(save_path, 'config.yaml'), 'w') as f:
f.write(yaml.dump(self.cfg.__dict__))
f.close()
# other utils
class logger:
"""Keeps track of the levels and steps of optimization. Logs it via TQDM"""
def __init__(self, n_steps, n_lvls):
self.n_steps = n_steps
self.n_lvls = n_lvls
self.lvl = -1
self.lvl_step = 0
self.steps = 0
self.pbar = tqdm(total=self.n_lvls * self.n_steps, desc='Starting')
def step(self):
self.pbar.update(1)
self.steps += 1
self.lvl_step += 1
def new_lvl(self):
self.lvl += 1
self.lvl_step = 0
def print(self):
self.pbar.set_description(f'Lvl {self.lvl}/{self.n_lvls-1}, step {self.lvl_step}/{self.n_steps}')
def set_seed(seed):
if seed is not None:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# debug utils
def draw_trajectory(trajectory, save_path=None, anim=True):
r = max(abs(trajectory.min()), trajectory.max())
if anim:
imgs = []
for i in tqdm(range(1, trajectory.shape[0])):
plt.plot(trajectory[:i, 0], trajectory[:i, 2], color='red')
plt.xlim(-r-1, r+1)
plt.ylim(-r-1, r+1)
plt.savefig(save_path + '.png')
imgs += [imageio.imread(save_path + '.png')]
imageio.mimwrite(save_path + '.mp4', imgs)
plt.close()
else:
# plt.scatter(trajectory[:, 0], trajectory[:, 1], trajectory[:, 2])
plt.plot(trajectory[:, 0], trajectory[:, 2], color='red')
plt.xlim(-r*1.5, r*1.5)
plt.ylim(-r*1.5, r*1.5)
if save_path is not None:
plt.savefig(save_path + '.png')
plt.close()
# velo = self.raw_motion[0, self.mask, :].numpy()
# print(velo.shape)
# imgs = []