GenMM / NN /utils.py
wyysf's picture
Duplicate from radames/GenMM-demo
27763e5
raw
history blame
3.88 kB
import torch
import torch.nn.functional as F
import unfoldNd
def extract_patches(x, patch_size, stride, loop=False):
"""Extract patches from a motion sequence"""
b, c, _t = x.shape
# manually padding to loop
if loop:
half = patch_size // 2
front, tail = x[:,:,:half], x[:,:,-half:]
x = torch.concat([tail, x, front], dim=-1)
x_patches = unfoldNd.unfoldNd(x, kernel_size=patch_size, stride=stride).transpose(1, 2).reshape(b, -1, c, patch_size)
return x_patches.view(b, -1, c * patch_size)
def combine_patches(x_shape, ys, patch_size, stride, loop=False):
"""Combine motion patches"""
# manually handle to loop
out_shape = [*x_shape]
if loop:
padding = patch_size // 2
out_shape[-1] = out_shape[-1] + padding * 2
combined = unfoldNd.foldNd(ys.permute(0, 2, 1), output_size=tuple(out_shape[-1:]), kernel_size=patch_size, stride=stride)
# normal fold matrix
input_ones = torch.ones(tuple(out_shape), dtype=ys.dtype, device=ys.device)
divisor = unfoldNd.unfoldNd(input_ones, kernel_size=patch_size, stride=stride)
divisor = unfoldNd.foldNd(divisor, output_size=tuple(out_shape[-1:]), kernel_size=patch_size, stride=stride)
combined = (combined / divisor).squeeze(dim=0).unsqueeze(0)
if loop:
half = patch_size // 2
front, tail = combined[:,:,:half], combined[:,:,-half:]
combined[:, :, half:2 * half] = (combined[:, :, half:2 * half] + tail) / 2
combined[:, :, - 2 * half:-half] = (front + combined[:, :, - 2 * half:-half]) / 2
combined = combined[:, :, half:-half]
return combined
def efficient_cdist(X, Y):
"""
Pytorch efficient way of computing distances between all vectors in X and Y, i.e (X[:, None] - Y[None, :])**2
Get the nearest neighbor index from Y for each X
:param X: (n1, d) tensor
:param Y: (n2, d) tensor
Returns a n2 n1 of indices
"""
dist = (X * X).sum(1)[:, None] + (Y * Y).sum(1)[None, :] - 2.0 * torch.mm(X, torch.transpose(Y, 0, 1))
d = X.shape[1]
dist /= d # normalize by size of vector to make dists independent of the size of d ( use same alpha for all patche-sizes)
return dist # DO NOT use torch.sqrt
def get_col_mins_efficient(dist_fn, X, Y, b=1024):
"""
Computes the l2 distance to the closest x or each y.
:param X: (n1, d) tensor
:param Y: (n2, d) tensor
Returns n1 long array of L2 distances
"""
n_batches = len(Y) // b
mins = torch.zeros(Y.shape[0], dtype=X.dtype, device=X.device)
for i in range(n_batches):
mins[i * b:(i + 1) * b] = dist_fn(X, Y[i * b:(i + 1) * b]).min(0)[0]
if len(Y) % b != 0:
mins[n_batches * b:] = dist_fn(X, Y[n_batches * b:]).min(0)[0]
return mins
def get_NNs_Dists(dist_fn, X, Y, alpha=None, b=1024):
"""
Get the nearest neighbor index from Y for each X.
Avoids holding a (n1 * n2) amtrix in order to reducing memory footprint to (b * max(n1,n2)).
:param X: (n1, d) tensor
:param Y: (n2, d) tensor
Returns a n2 n1 of indices amd distances
"""
if alpha is not None:
normalizing_row = get_col_mins_efficient(dist_fn, X, Y, b=b)
normalizing_row = alpha + normalizing_row[None, :]
else:
normalizing_row = 1
NNs = torch.zeros(X.shape[0], dtype=torch.long, device=X.device)
Dists = torch.zeros(X.shape[0], dtype=torch.float, device=X.device)
n_batches = len(X) // b
for i in range(n_batches):
dists = dist_fn(X[i * b:(i + 1) * b], Y) / normalizing_row
NNs[i * b:(i + 1) * b] = dists.min(1)[1]
Dists[i * b:(i + 1) * b] = dists.min(1)[0]
if len(X) % b != 0:
dists = dist_fn(X[n_batches * b:], Y) / normalizing_row
NNs[n_batches * b:] = dists.min(1)[1]
Dists[n_batches * b: ] = dists.min(1)[0]
return NNs, Dists