Spaces:
Running
Running
File size: 7,684 Bytes
27763e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import torch
from utils.transforms import quat2mat, repr6d2mat, euler2mat
class ForwardKinematics:
def __init__(self, parents, offsets=None):
self.parents = parents
if offsets is not None and len(offsets.shape) == 2:
offsets = offsets.unsqueeze(0)
self.offsets = offsets
def forward(self, rots, offsets=None, global_pos=None):
"""
Forward Kinematics: returns a per-bone transformation
@param rots: local joint rotations (batch_size, bone_num, 3, 3)
@param offsets: (batch_size, bone_num, 3) or None
@param global_pos: global_position: (batch_size, 3) or keep it as in offsets (default)
@return: (batch_szie, bone_num, 3, 4)
"""
rots = rots.clone()
if offsets is None:
offsets = self.offsets.to(rots.device)
if global_pos is None:
global_pos = offsets[:, 0]
pos = torch.zeros((rots.shape[0], rots.shape[1], 3), device=rots.device)
rest_pos = torch.zeros_like(pos)
res = torch.zeros((rots.shape[0], rots.shape[1], 3, 4), device=rots.device)
pos[:, 0] = global_pos
rest_pos[:, 0] = offsets[:, 0]
for i, p in enumerate(self.parents):
if i != 0:
rots[:, i] = torch.matmul(rots[:, p], rots[:, i])
pos[:, i] = torch.matmul(rots[:, p], offsets[:, i].unsqueeze(-1)).squeeze(-1) + pos[:, p]
rest_pos[:, i] = rest_pos[:, p] + offsets[:, i]
res[:, i, :3, :3] = rots[:, i]
res[:, i, :, 3] = torch.matmul(rots[:, i], -rest_pos[:, i].unsqueeze(-1)).squeeze(-1) + pos[:, i]
return res
def accumulate(self, local_rots):
"""
Get global joint rotation from local rotations
@param local_rots: (batch_size, n_bone, 3, 3)
@return: global_rotations
"""
res = torch.empty_like(local_rots)
for i, p in enumerate(self.parents):
if i == 0:
res[:, i] = local_rots[:, i]
else:
res[:, i] = torch.matmul(res[:, p], local_rots[:, i])
return res
def unaccumulate(self, global_rots):
"""
Get local joint rotation from global rotations
@param global_rots: (batch_size, n_bone, 3, 3)
@return: local_rotations
"""
res = torch.empty_like(global_rots)
inv = torch.empty_like(global_rots)
for i, p in enumerate(self.parents):
if i == 0:
inv[:, i] = global_rots[:, i].transpose(-2, -1)
res[:, i] = global_rots[:, i]
continue
res[:, i] = torch.matmul(inv[:, p], global_rots[:, i])
inv[:, i] = torch.matmul(res[:, i].transpose(-2, -1), inv[:, p])
return res
class ForwardKinematicsJoint:
def __init__(self, parents, offset):
self.parents = parents
self.offset = offset
'''
rotation should have shape batch_size * Joint_num * (3/4) * Time
position should have shape batch_size * 3 * Time
offset should have shape batch_size * Joint_num * 3
output have shape batch_size * Time * Joint_num * 3
'''
def forward(self, rotation: torch.Tensor, position: torch.Tensor, offset=None,
world=True):
'''
if not quater and rotation.shape[-2] != 3: raise Exception('Unexpected shape of rotation')
if quater and rotation.shape[-2] != 4: raise Exception('Unexpected shape of rotation')
rotation = rotation.permute(0, 3, 1, 2)
position = position.permute(0, 2, 1)
'''
if rotation.shape[-1] == 6:
transform = repr6d2mat(rotation)
elif rotation.shape[-1] == 4:
norm = torch.norm(rotation, dim=-1, keepdim=True)
rotation = rotation / norm
transform = quat2mat(rotation)
elif rotation.shape[-1] == 3:
transform = euler2mat(rotation)
else:
raise Exception('Only accept quaternion rotation input')
result = torch.empty(transform.shape[:-2] + (3,), device=position.device)
if offset is None:
offset = self.offset
offset = offset.reshape((-1, 1, offset.shape[-2], offset.shape[-1], 1))
result[..., 0, :] = position
for i, pi in enumerate(self.parents):
if pi == -1:
assert i == 0
continue
result[..., i, :] = torch.matmul(transform[..., pi, :, :], offset[..., i, :, :]).squeeze()
transform[..., i, :, :] = torch.matmul(transform[..., pi, :, :].clone(), transform[..., i, :, :].clone())
if world: result[..., i, :] += result[..., pi, :]
return result
class InverseKinematicsJoint:
def __init__(self, rotations: torch.Tensor, positions: torch.Tensor, offset, parents, constrains):
self.rotations = rotations.detach().clone()
self.rotations.requires_grad_(True)
self.position = positions.detach().clone()
self.position.requires_grad_(True)
self.parents = parents
self.offset = offset
self.constrains = constrains
self.optimizer = torch.optim.Adam([self.position, self.rotations], lr=1e-3, betas=(0.9, 0.999))
self.criteria = torch.nn.MSELoss()
self.fk = ForwardKinematicsJoint(parents, offset)
self.glb = None
def step(self):
self.optimizer.zero_grad()
glb = self.fk.forward(self.rotations, self.position)
loss = self.criteria(glb, self.constrains)
loss.backward()
self.optimizer.step()
self.glb = glb
return loss.item()
class InverseKinematicsJoint2:
def __init__(self, rotations: torch.Tensor, positions: torch.Tensor, offset, parents, constrains, cid,
lambda_rec_rot=1., lambda_rec_pos=1., use_velo=False):
self.use_velo = use_velo
self.rotations_ori = rotations.detach().clone()
self.rotations = rotations.detach().clone()
self.rotations.requires_grad_(True)
self.position_ori = positions.detach().clone()
self.position = positions.detach().clone()
if self.use_velo:
self.position[1:] = self.position[1:] - self.position[:-1]
self.position.requires_grad_(True)
self.parents = parents
self.offset = offset
self.constrains = constrains.detach().clone()
self.cid = cid
self.lambda_rec_rot = lambda_rec_rot
self.lambda_rec_pos = lambda_rec_pos
self.optimizer = torch.optim.Adam([self.position, self.rotations], lr=1e-3, betas=(0.9, 0.999))
self.criteria = torch.nn.MSELoss()
self.fk = ForwardKinematicsJoint(parents, offset)
self.glb = None
def step(self):
self.optimizer.zero_grad()
if self.use_velo:
position = torch.cumsum(self.position, dim=0)
else:
position = self.position
glb = self.fk.forward(self.rotations, position)
self.constrain_loss = self.criteria(glb[:, self.cid], self.constrains)
self.rec_loss_rot = self.criteria(self.rotations, self.rotations_ori)
self.rec_loss_pos = self.criteria(self.position, self.position_ori)
loss = self.constrain_loss + self.rec_loss_rot * self.lambda_rec_rot + self.rec_loss_pos * self.lambda_rec_pos
loss.backward()
self.optimizer.step()
self.glb = glb
return loss.item()
def get_position(self):
if self.use_velo:
position = torch.cumsum(self.position.detach(), dim=0)
else:
position = self.position.detach()
return position
|