File size: 4,560 Bytes
27763e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import os.path as osp
import sys
import time
import yaml
import imageio
import random
import shutil
import random
import numpy as np
import torch
from tqdm import tqdm
import matplotlib.pyplot as plt

class ConfigParser():
    def __init__(self, args):
        """
        class to parse configuration.
        """
        args = args.parse_args()
        self.cfg = self.merge_config_file(args)

        # set random seed
        self.set_seed()

    def __str__(self):
        return str(self.cfg.__dict__)

    def __getattr__(self, name):
        """
        Access items use dot.notation.
        """
        return self.cfg.__dict__[name]

    def __getitem__(self, name):
        """
        Access items like ordinary dict.
        """
        return self.cfg.__dict__[name]

    def merge_config_file(self, args, allow_invalid=True):
        """
        Load json config file and merge the arguments
        """
        assert args.config is not None
        with open(args.config, 'r') as f:
            cfg = yaml.safe_load(f)
            if 'config' in cfg.keys():
                del cfg['config']
        f.close()
        invalid_args = list(set(cfg.keys()) - set(dir(args)))
        if invalid_args and not allow_invalid:
            raise ValueError(f"Invalid args {invalid_args} in {args.config}.")
        
        for k in list(cfg.keys()):
            if k in args.__dict__.keys() and args.__dict__[k] is not None:
                print('=========>  overwrite config: {} = {}'.format(k, args.__dict__[k]))
                del cfg[k]

        args.__dict__.update(cfg)

        return args

    def set_seed(self):
        ''' set random seed for random, numpy and torch. '''
        if 'seed' not in self.cfg.__dict__.keys():
            return
        if self.cfg.seed is None:
            self.cfg.seed = int(time.time()) % 1000000
        print('=========>  set random seed: {}'.format(self.cfg.seed))
        # fix random seeds for reproducibility
        random.seed(self.cfg.seed)
        np.random.seed(self.cfg.seed)
        torch.manual_seed(self.cfg.seed)
        torch.cuda.manual_seed(self.cfg.seed)

    def save_codes_and_config(self, save_path):
        """
        save codes and config to $save_path.
        """
        cur_codes_path = osp.dirname(osp.dirname(os.path.abspath(__file__)))
        if os.path.exists(save_path):
            shutil.rmtree(save_path)
        shutil.copytree(cur_codes_path, osp.join(save_path, 'codes'), \
            ignore=shutil.ignore_patterns('*debug*', '*data*', '*output*', '*exps*', '*.txt', '*.json', '*.mp4', '*.png', '*.jpg', '*.bvh', '*.csv', '*.pth', '*.tar', '*.npz'))

        with open(osp.join(save_path, 'config.yaml'), 'w') as f:
            f.write(yaml.dump(self.cfg.__dict__))
        f.close()


# other utils
class logger:
    """Keeps track of the levels and steps of optimization. Logs it via TQDM"""
    def __init__(self, n_steps, n_lvls):
        self.n_steps = n_steps
        self.n_lvls = n_lvls
        self.lvl = -1
        self.lvl_step = 0
        self.steps = 0
        self.pbar = tqdm(total=self.n_lvls * self.n_steps, desc='Starting')

    def step(self):
        self.pbar.update(1)
        self.steps += 1
        self.lvl_step += 1

    def new_lvl(self):
        self.lvl += 1
        self.lvl_step = 0

    def print(self):
        self.pbar.set_description(f'Lvl {self.lvl}/{self.n_lvls-1}, step {self.lvl_step}/{self.n_steps}')


def set_seed(seed):
    if seed is not None:
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)


# debug utils
def draw_trajectory(trajectory, save_path=None, anim=True):
    r = max(abs(trajectory.min()), trajectory.max())
    if anim:
        imgs = []
        for i in tqdm(range(1, trajectory.shape[0])):
            plt.plot(trajectory[:i, 0], trajectory[:i, 2], color='red')
            plt.xlim(-r-1, r+1)
            plt.ylim(-r-1, r+1)
            plt.savefig(save_path + '.png')
            imgs += [imageio.imread(save_path + '.png')]
        imageio.mimwrite(save_path + '.mp4', imgs)
        plt.close()
    else:
        # plt.scatter(trajectory[:, 0], trajectory[:, 1], trajectory[:, 2])
        plt.plot(trajectory[:, 0], trajectory[:, 2], color='red')
        plt.xlim(-r*1.5, r*1.5)
        plt.ylim(-r*1.5, r*1.5)
        if save_path is not None:
            plt.savefig(save_path + '.png')
            plt.close()

    # velo = self.raw_motion[0, self.mask, :].numpy()
    # print(velo.shape)
    # imgs = []