import spaces import argparse import os import json import torch import sys import time import importlib import numpy as np from omegaconf import OmegaConf from huggingface_hub import hf_hub_download from diffusers import DiffusionPipeline import PIL from PIL import Image from collections import OrderedDict import trimesh import rembg import gradio as gr from typing import Any proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(os.path.join(proj_dir)) import tempfile import craftsman from craftsman.utils.config import ExperimentConfig, load_config _TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner''' _DESCRIPTION = '''
Important: If you have your own data and want to collaborate, we are welcom to any contact.
Select or upload a image, then just click 'Generate'.
By mimicking the artist/craftsman modeling workflow, we propose CraftsMan (aka 匠心) that uses 3D Latent Set Diffusion Model that directly generate coarse meshes, then a multi-view normal enhanced image generation model is used to refine the mesh. We provide the coarse 3D diffusion part here.
If you found CraftsMan is helpful, please help to ⭐ the Github Repo. Thanks!
*If you have your own multi-view images, you can directly upload it.
''' _CITE_ = r""" --- 📝 **Citation** If you find our work useful for your research or applications, please cite using this bibtex: ```bibtex @article{li2024craftsman, author = {Weiyu Li and Jiarui Liu and Rui Chen and Yixun Liang and Xuelin Chen and Ping Tan and Xiaoxiao Long}, title = {CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner}, journal = {arXiv preprint arXiv:2405.14979}, year = {2024}, } ``` 🤗 **Acknowledgements** We use Instant Meshes to remesh the generated mesh to a lower face count, thanks to the authors for the great work. 📋 **License** CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so any downstream solution and products (including cloud services) that include CraftsMan code or a trained model (both pretrained or custom trained) inside it should be open-sourced to comply with the AGPL conditions. If you have any questions about the usage of CraftsMan, please contact us first. 📧 **Contact** If you have any questions, feel free to open a discussion or contact us at weiyuli.cn@gmail.com. """ model = None cached_dir = None def check_input_image(input_image): if input_image is None: raise gr.Error("No image uploaded!") class RMBG(object): def __init__(self): pass def rmbg_rembg(self, input_image, background_color): def _rembg_remove( image: PIL.Image.Image, rembg_session = None, force: bool = False, **rembg_kwargs, ) -> PIL.Image.Image: do_remove = True if image.mode == "RGBA" and image.getextrema()[3][0] < 255: # explain why current do not rm bg print("alhpa channl not enpty, skip remove background, using alpha channel as mask") background = Image.new("RGBA", image.size, background_color) image = Image.alpha_composite(background, image) do_remove = False do_remove = do_remove or force if do_remove: image = rembg.remove(image, session=rembg_session, **rembg_kwargs) # calculate the min bbox of the image alpha = image.split()[-1] image = image.crop(alpha.getbbox()) return image return _rembg_remove(input_image, None, force_remove=True) def run(self, rm_type, image, foreground_ratio, background_choice, background_color=(0, 0, 0, 0)): if "Original" in background_choice: return image else: if background_choice == "Alpha as mask": alpha = image.split()[-1] image = image.crop(alpha.getbbox()) elif "Remove" in background_choice: if rm_type.upper() == "REMBG": image = self.rmbg_rembg(image, background_color=background_color) else: return -1 # Calculate the new size after rescaling new_size = tuple(int(dim * foreground_ratio) for dim in image.size) # Resize the image while maintaining the aspect ratio resized_image = image.resize(new_size) # Create a new image with the original size and white background padded_image = PIL.Image.new("RGBA", image.size, (0, 0, 0, 0)) paste_position = ((image.width - resized_image.width) // 2, (image.height - resized_image.height) // 2) padded_image.paste(resized_image, paste_position) # expand image to 1:1 width, height = padded_image.size if width == height: return padded_image new_size = (max(width, height), max(width, height)) image = PIL.Image.new("RGBA", new_size, (0, 0, 0, 0)) paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2) image.paste(padded_image, paste_position) return image @spaces.GPU def image2mesh(image: Any, more: bool = False, scheluder_name: str ="DDIMScheduler", guidance_scale: int = 7.5, steps: int = 30, seed: int = 4, target_face_count: int = 2000, octree_depth: int = 7): sample_inputs = { "image": [ image ] } global model latents = model.sample( sample_inputs, sample_times=1, steps=steps, guidance_scale=guidance_scale, seed=seed )[0] # decode the latents to mesh box_v = 1.1 mesh_outputs, _ = model.shape_model.extract_geometry( latents, bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v], octree_depth=octree_depth ) assert len(mesh_outputs) == 1, "Only support single mesh output for gradio demo" mesh = trimesh.Trimesh(mesh_outputs[0][0], mesh_outputs[0][1]) # filepath = f"{cached_dir}/{time.time()}.obj" filepath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name mesh.export(filepath, include_normals=True) if 'Remesh' in more: remeshed_filepath = tempfile.NamedTemporaryFile(suffix=f"_remeshed.obj", delete=False).name print("Remeshing with Instant Meshes...") command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -o {remeshed_filepath}" os.system(command) filepath = remeshed_filepath return filepath if __name__=="__main__": parser = argparse.ArgumentParser() parser.add_argument("--model_path", type=str, default="./ckpts/craftsman-v1-5", help="Path to the object file",) parser.add_argument("--cached_dir", type=str, default="") parser.add_argument("--device", type=int, default=0) args = parser.parse_args() cached_dir = args.cached_dir if cached_dir != "": os.makedirs(args.cached_dir, exist_ok=True) device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu") print(f"using device: {device}") # for input image background_choice = OrderedDict({ "Alpha as Mask": "Alpha as Mask", "Auto Remove Background": "Auto Remove Background", "Original Image": "Original Image", }) # for 3D latent set diffusion if args.model_path == "": ckpt_path = hf_hub_download(repo_id="craftsman3d/craftsman-v1-5", filename="model.ckpt", repo_type="model") config_path = hf_hub_download(repo_id="craftsman3d/craftsman-v1-5", filename="config.yaml", repo_type="model") else: ckpt_path = os.path.join(args.model_path, "model.ckpt") config_path = os.path.join(args.model_path, "config.yaml") scheluder_dict = OrderedDict({ "DDIMScheduler": 'diffusers.schedulers.DDIMScheduler', # "DPMSolverMultistepScheduler": 'diffusers.schedulers.DPMSolverMultistepScheduler', # not support yet # "UniPCMultistepScheduler": 'diffusers.schedulers.UniPCMultistepScheduler', # not support yet }) # main GUI custom_theme = gr.themes.Soft(primary_hue="blue").set( button_secondary_background_fill="*neutral_100", button_secondary_background_fill_hover="*neutral_200") custom_css = '''#disp_image { text-align: center; /* Horizontally center the content */ }''' with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo: with gr.Row(): with gr.Column(scale=1): gr.Markdown('# ' + _TITLE) gr.Markdown(_DESCRIPTION) with gr.Row(): with gr.Column(scale=2): with gr.Column(): # input image with gr.Row(): image_input = gr.Image( label="Image Input", image_mode="RGBA", sources="upload", type="pil", ) run_btn = gr.Button('Generate', variant='primary', interactive=True) with gr.Row(): gr.Markdown('''Try a different seed and MV Model for better results. Good Luck :)''') with gr.Row(): seed = gr.Number(0, label='Seed', show_label=True) more = gr.CheckboxGroup(["Remesh"], label="More", show_label=False) target_face_count = gr.Number(2000, label='Target Face Count', show_label=True) with gr.Row(): gr.Examples( examples=[os.path.join("./assets/examples", i) for i in os.listdir("./assets/examples")], inputs=[image_input], examples_per_page=8 ) with gr.Column(scale=4): with gr.Row(): output_model_obj = gr.Model3D( label="Output Model (OBJ Format)", camera_position=(90.0, 90.0, 3.5), interactive=False, ) with gr.Row(): gr.Markdown('''*please note that the model is fliped due to the gradio viewer, please download the obj file and you will get the correct orientation.''') with gr.Accordion('Advanced options', open=False): with gr.Row(): background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys())) rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"]) foreground_ratio = gr.Slider(label="Foreground Ratio", value=1.0, minimum=0.5, maximum=1.0, step=0.01) with gr.Row(): guidance_scale = gr.Number(label="3D Guidance Scale", value=5.0, minimum=3.0, maximum=10.0) steps = gr.Number(value=50, minimum=20, maximum=100, label="3D Sample Steps") with gr.Row(): scheduler = gr.Dropdown(label="scheluder", value="DDIMScheduler",choices=list(scheluder_dict.keys())) octree_depth = gr.Slider(label="Octree Depth", value=7, minimum=4, maximum=8, step=1) gr.Markdown(_CITE_) outputs = [output_model_obj] rmbg = RMBG() # model = load_model(ckpt_path, config_path, device) cfg = load_config(config_path) model = craftsman.find(cfg.system_type)(cfg.system) print(f"Restoring states from the checkpoint path at {ckpt_path} with config {cfg}") ckpt = torch.load(ckpt_path, map_location=torch.device('cpu')) model.load_state_dict( ckpt["state_dict"] if "state_dict" in ckpt else ckpt, ) model = model.to(device).eval() run_btn.click(fn=check_input_image, inputs=[image_input] ).success( fn=rmbg.run, inputs=[rmbg_type, image_input, foreground_ratio, background_choice], outputs=[image_input] ).success( fn=image2mesh, inputs=[image_input, more, scheduler, guidance_scale, steps, seed, target_face_count, octree_depth], outputs=outputs, api_name="generate_img2obj") demo.queue().launch(share=True, allowed_paths=[args.cached_dir])