wyysf commited on
Commit
62566b5
·
1 Parent(s): 2f4a9d2
apps/__pycache__/mv_models.cpython-38.pyc CHANGED
Binary files a/apps/__pycache__/mv_models.cpython-38.pyc and b/apps/__pycache__/mv_models.cpython-38.pyc differ
 
apps/mv_models.py CHANGED
@@ -26,99 +26,92 @@ class GenMVImage(object):
26
  self.seed = 1024
27
  self.guidance_scale = 7.5
28
  self.step = 50
29
- self.pipelines = {}
30
  self.device = device
31
-
32
- @spaces.GPU
33
- def gen_image_from_crm(self, image):
34
  from .third_party.CRM.pipelines import TwoStagePipeline
35
  stage1_config = OmegaConf.load(f"{parent_dir}/apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config
36
  stage1_sampler_config = stage1_config.sampler
37
  stage1_model_config = stage1_config.models
38
  stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth", repo_type="model")
39
  stage1_model_config.config = f"{parent_dir}/apps/third_party/CRM/" + stage1_model_config.config
40
- if "crm" in self.pipelines.keys():
41
- pipeline = self.pipelines['crm']
42
- else:
43
- self.pipelines['crm'] = TwoStagePipeline(
44
- stage1_model_config,
45
- stage1_sampler_config,
46
- device=self.device,
47
- dtype=torch.float16
48
- )
49
- pipeline = self.pipelines['crm']
50
- pipeline.set_seed(self.seed)
51
- rt_dict = pipeline(image, scale=self.guidance_scale, step=self.step)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  mv_imgs = rt_dict["stage1_images"]
53
  return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0]
54
 
55
  @spaces.GPU
56
  def gen_image_from_mvdream(self, image, text):
57
- from .third_party.mvdream_diffusers.pipeline_mvdream import MVDreamPipeline
58
  if image is None:
59
- if "mvdream" in self.pipelines.keys():
60
- pipe_MVDream = self.pipelines['mvdream']
61
- else:
62
- self.pipelines['mvdream'] = MVDreamPipeline.from_pretrained(
63
- "ashawkey/mvdream-sd2.1-diffusers", # remote weights
64
- torch_dtype=torch.float16,
65
- trust_remote_code=True,
66
- )
67
- self.pipelines['mvdream'] = self.pipelines['mvdream'].to(self.device)
68
- pipe_MVDream = self.pipelines['mvdream']
69
- mv_imgs = pipe_MVDream(
70
- text,
71
- negative_prompt="ugly, deformed, disfigured, poor details, bad anatomy",
72
- num_inference_steps=self.step,
73
- guidance_scale=self.guidance_scale,
74
- generator = torch.Generator(self.device).manual_seed(self.seed)
75
- )
76
- else:
77
  image = np.array(image)
78
  image = image.astype(np.float32) / 255.0
79
  image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
80
- if "imagedream" in self.pipelines.keys():
81
- pipe_imagedream = self.pipelines['imagedream']
82
- else:
83
- self.pipelines['imagedream'] = MVDreamPipeline.from_pretrained(
84
- "ashawkey/imagedream-ipmv-diffusers", # remote weights
85
- torch_dtype=torch.float16,
86
- trust_remote_code=True,
87
- )
88
- self.pipelines['imagedream'] = self.pipelines['imagedream'].to(self.device)
89
- pipe_imagedream = self.pipelines['imagedream']
90
- mv_imgs = pipe_imagedream(
91
- text,
92
- image,
93
- negative_prompt="ugly, deformed, disfigured, poor details, bad anatomy",
94
- num_inference_steps=self.step,
95
- guidance_scale=self.guidance_scale,
96
- generator = torch.Generator(self.device).manual_seed(self.seed)
97
- )
98
  return mv_imgs[1], mv_imgs[2], mv_imgs[3], mv_imgs[0]
99
 
100
  @spaces.GPU
101
  def gen_image_from_wonder3d(self, image, crop_size):
102
- sys.path.append(f"{parent_dir}/apps/third_party/Wonder3D")
103
- from diffusers import DiffusionPipeline # only tested on diffusers[torch]==0.19.3, may have conflicts with newer versions of diffusers
104
 
105
  weight_dtype = torch.float16
106
  batch = prepare_data(image, crop_size)
107
 
108
- if "wonder3d" in self.pipelines.keys():
109
- pipeline = self.pipelines['wonder3d']
110
- else:
111
- self.pipelines['wonder3d'] = DiffusionPipeline.from_pretrained(
112
- 'flamehaze1115/wonder3d-v1.0', # or use local checkpoint './ckpts'
113
- custom_pipeline='flamehaze1115/wonder3d-pipeline',
114
- torch_dtype=torch.float16
115
- )
116
- self.pipelines['wonder3d'].unet.enable_xformers_memory_efficient_attention()
117
- self.pipelines['wonder3d'].to(self.device)
118
- self.pipelines['wonder3d'].set_progress_bar_config(disable=True)
119
- pipeline = self.pipelines['wonder3d']
120
-
121
- generator = torch.Generator(device=pipeline.unet.device).manual_seed(self.seed)
122
  # repeat (2B, Nv, 3, H, W)
123
  imgs_in = torch.cat([batch['imgs_in']] * 2, dim=0).to(weight_dtype)
124
 
@@ -133,7 +126,7 @@ class GenMVImage(object):
133
  imgs_in = rearrange(imgs_in, "Nv C H W -> (Nv) C H W")
134
  # (B*Nv, Nce)
135
 
136
- out = pipeline(
137
  imgs_in,
138
  # camera_embeddings,
139
  generator=generator,
@@ -154,6 +147,7 @@ class GenMVImage(object):
154
  mv_imgs = images_pred
155
  return mv_imgs[0], mv_imgs[2], mv_imgs[4], mv_imgs[5]
156
 
 
157
  def run(self, mvimg_model, text, image, crop_size, seed, guidance_scale, step):
158
  self.seed = seed
159
  self.guidance_scale = guidance_scale
@@ -161,6 +155,6 @@ class GenMVImage(object):
161
  if mvimg_model.upper() == "CRM":
162
  return self.gen_image_from_crm(image)
163
  elif mvimg_model.upper() == "IMAGEDREAM":
164
- return self.gen_image_from_mvdream(image, text)
165
  elif mvimg_model.upper() == "WONDER3D":
166
  return self.gen_image_from_wonder3d(image, crop_size)
 
26
  self.seed = 1024
27
  self.guidance_scale = 7.5
28
  self.step = 50
 
29
  self.device = device
30
+
 
 
31
  from .third_party.CRM.pipelines import TwoStagePipeline
32
  stage1_config = OmegaConf.load(f"{parent_dir}/apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config
33
  stage1_sampler_config = stage1_config.sampler
34
  stage1_model_config = stage1_config.models
35
  stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth", repo_type="model")
36
  stage1_model_config.config = f"{parent_dir}/apps/third_party/CRM/" + stage1_model_config.config
37
+ self.crm_pipeline = TwoStagePipeline(
38
+ stage1_model_config,
39
+ stage1_sampler_config,
40
+ device=self.device,
41
+ dtype=torch.float16
42
+ )
43
+ self.crm_pipeline.set_seed(self.seed)
44
+
45
+ sys.path.append(f"{parent_dir}/apps/third_party/Wonder3D")
46
+ from diffusers import DiffusionPipeline # only tested on diffusers[torch]==0.19.3, may have conflicts with newer versions of diffusers
47
+ self.wonder3d_pipeline = DiffusionPipeline.from_pretrained(
48
+ 'flamehaze1115/wonder3d-v1.0', # or use local checkpoint './ckpts'
49
+ custom_pipeline='flamehaze1115/wonder3d-pipeline',
50
+ torch_dtype=torch.float16
51
+ )
52
+ self.wonder3d_pipeline.unet.enable_xformers_memory_efficient_attention()
53
+ self.wonder3d_pipeline.to(self.device)
54
+ self.wonder3d_pipeline.set_progress_bar_config(disable=True)
55
+
56
+
57
+ sys.path.append(f"{parent_dir}/apps/third_party/mvdream_diffusers")
58
+ from .third_party.mvdream_diffusers.pipeline_mvdream import MVDreamPipeline
59
+ self.mvdream_pipeline = MVDreamPipeline.from_pretrained(
60
+ "ashawkey/mvdream-sd2.1-diffusers", # remote weights
61
+ torch_dtype=torch.float16,
62
+ trust_remote_code=True,
63
+ )
64
+ self.mvdream_pipeline = self.mvdream_pipeline.to(self.device)
65
+ # self.imagedream_pipeline = MVDreamPipeline.from_pretrained(
66
+ # "ashawkey/imagedream-ipmv-diffusers", # remote weights
67
+ # torch_dtype=torch.float16,
68
+ # trust_remote_code=True,
69
+ # )
70
+ # self.imagedream_pipeline = self.imagedream_pipeline.to(self.device)
71
+
72
+
73
+ @spaces.GPU
74
+ def gen_image_from_crm(self, image):
75
+ rt_dict = self.crm_pipeline(
76
+ image,
77
+ scale=self.guidance_scale,
78
+ step=self.step
79
+ )
80
  mv_imgs = rt_dict["stage1_images"]
81
  return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0]
82
 
83
  @spaces.GPU
84
  def gen_image_from_mvdream(self, image, text):
 
85
  if image is None:
86
+ mv_imgs = self.mvdream_pipeline(
87
+ text,
88
+ negative_prompt="ugly, deformed, disfigured, poor details, bad anatomy",
89
+ num_inference_steps=self.step,
90
+ guidance_scale=self.guidance_scale,
91
+ generator = torch.Generator(self.device).manual_seed(self.seed)
92
+ )
93
+ elif text is not None:
 
 
 
 
 
 
 
 
 
 
94
  image = np.array(image)
95
  image = image.astype(np.float32) / 255.0
96
  image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
97
+
98
+ mv_imgs = self.imagedream_pipeline(
99
+ text,
100
+ image,
101
+ negative_prompt="ugly, deformed, disfigured, poor details, bad anatomy",
102
+ num_inference_steps=self.step,
103
+ guidance_scale=self.guidance_scale,
104
+ generator = torch.Generator(self.device).manual_seed(self.seed)
105
+ )
 
 
 
 
 
 
 
 
 
106
  return mv_imgs[1], mv_imgs[2], mv_imgs[3], mv_imgs[0]
107
 
108
  @spaces.GPU
109
  def gen_image_from_wonder3d(self, image, crop_size):
 
 
110
 
111
  weight_dtype = torch.float16
112
  batch = prepare_data(image, crop_size)
113
 
114
+ generator = torch.Generator(device=self.wonder3d_pipeline.unet.device).manual_seed(self.seed)
 
 
 
 
 
 
 
 
 
 
 
 
 
115
  # repeat (2B, Nv, 3, H, W)
116
  imgs_in = torch.cat([batch['imgs_in']] * 2, dim=0).to(weight_dtype)
117
 
 
126
  imgs_in = rearrange(imgs_in, "Nv C H W -> (Nv) C H W")
127
  # (B*Nv, Nce)
128
 
129
+ out = self.wonder3d_pipeline(
130
  imgs_in,
131
  # camera_embeddings,
132
  generator=generator,
 
147
  mv_imgs = images_pred
148
  return mv_imgs[0], mv_imgs[2], mv_imgs[4], mv_imgs[5]
149
 
150
+ @spaces.GPU
151
  def run(self, mvimg_model, text, image, crop_size, seed, guidance_scale, step):
152
  self.seed = seed
153
  self.guidance_scale = guidance_scale
 
155
  if mvimg_model.upper() == "CRM":
156
  return self.gen_image_from_crm(image)
157
  elif mvimg_model.upper() == "IMAGEDREAM":
158
+ return self.gen_image_from_mvdream(image, None)
159
  elif mvimg_model.upper() == "WONDER3D":
160
  return self.gen_image_from_wonder3d(image, crop_size)