CraftsMan3D / gradio_app.py
wyysf's picture
update to v1.5
8133633
raw
history blame
13.5 kB
import spaces
import argparse
import os
import json
import torch
import sys
import time
import importlib
import numpy as np
from omegaconf import OmegaConf
from huggingface_hub import hf_hub_download
from diffusers import DiffusionPipeline
import PIL
from PIL import Image
from collections import OrderedDict
import trimesh
import rembg
import gradio as gr
from typing import Any
proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(os.path.join(proj_dir))
import tempfile
import craftsman
from craftsman.utils.config import ExperimentConfig, load_config
_TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner'''
_DESCRIPTION = '''
<div>
<span style="color: red;">Important: If you have your own data and want to collaborate, we are welcom to any contact.</span>
<div>
Select or upload a image, then just click 'Generate'.
<br>
By mimicking the artist/craftsman modeling workflow, we propose CraftsMan (aka εŒ εΏƒ) that uses 3D Latent Set Diffusion Model that directly generate coarse meshes,
then a multi-view normal enhanced image generation model is used to refine the mesh.
We provide the coarse 3D diffusion part here.
<br>
If you found CraftsMan is helpful, please help to ⭐ the <a href='https://github.com/wyysf-98/CraftsMan/' target='_blank'>Github Repo</a>. Thanks!
<a style="display:inline-block; margin-left: .5em" href='https://github.com/wyysf-98/CraftsMan/'><img src='https://img.shields.io/github/stars/wyysf-98/CraftsMan?style=social' /></a>
<br>
*If you have your own multi-view images, you can directly upload it.
</div>
'''
_CITE_ = r"""
---
πŸ“ **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{li2024craftsman,
author = {Weiyu Li and Jiarui Liu and Rui Chen and Yixun Liang and Xuelin Chen and Ping Tan and Xiaoxiao Long},
title = {CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner},
journal = {arXiv preprint arXiv:2405.14979},
year = {2024},
}
```
πŸ€— **Acknowledgements**
We use <a href='https://github.com/wjakob/instant-meshes' target='_blank'>Instant Meshes</a> to remesh the generated mesh to a lower face count, thanks to the authors for the great work.
πŸ“‹ **License**
CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so any downstream solution and products (including cloud services) that include CraftsMan code or a trained model (both pretrained or custom trained) inside it should be open-sourced to comply with the AGPL conditions. If you have any questions about the usage of CraftsMan, please contact us first.
πŸ“§ **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>.
"""
model = None
cached_dir = None
generator = None
def check_input_image(input_image):
if input_image is None:
raise gr.Error("No image uploaded!")
class RMBG(object):
def __init__(self):
pass
def rmbg_rembg(self, input_image, background_color):
def _rembg_remove(
image: PIL.Image.Image,
rembg_session = None,
force: bool = False,
**rembg_kwargs,
) -> PIL.Image.Image:
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
# explain why current do not rm bg
print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
background = Image.new("RGBA", image.size, background_color)
image = Image.alpha_composite(background, image)
do_remove = False
do_remove = do_remove or force
if do_remove:
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
# calculate the min bbox of the image
alpha = image.split()[-1]
image = image.crop(alpha.getbbox())
return image
return _rembg_remove(input_image, None, force_remove=True)
def run(self, rm_type, image, foreground_ratio, background_choice, background_color=(0, 0, 0, 0)):
if "Original" in background_choice:
return image
else:
if background_choice == "Alpha as mask":
alpha = image.split()[-1]
image = image.crop(alpha.getbbox())
elif "Remove" in background_choice:
if rm_type.upper() == "REMBG":
image = self.rmbg_rembg(image, background_color=background_color)
else:
return -1
# Calculate the new size after rescaling
new_size = tuple(int(dim * foreground_ratio) for dim in image.size)
# Resize the image while maintaining the aspect ratio
resized_image = image.resize(new_size)
# Create a new image with the original size and white background
padded_image = PIL.Image.new("RGBA", image.size, (0, 0, 0, 0))
paste_position = ((image.width - resized_image.width) // 2, (image.height - resized_image.height) // 2)
padded_image.paste(resized_image, paste_position)
# expand image to 1:1
width, height = padded_image.size
if width == height:
return padded_image
new_size = (max(width, height), max(width, height))
image = PIL.Image.new("RGBA", new_size, (0, 0, 0, 0))
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
image.paste(padded_image, paste_position)
return image
# @spaces.GPU
def image2mesh(image: Any,
more: bool = False,
scheluder_name: str ="DDIMScheduler",
guidance_scale: int = 7.5,
steps: int = 30,
seed: int = 4,
target_face_count: int = 2000,
octree_depth: int = 7):
sample_inputs = {
"image": [
image
]
}
global model
latents = model.sample(
sample_inputs,
sample_times=1,
steps=steps,
guidance_scale=guidance_scale,
seed=seed
)[0]
# decode the latents to mesh
box_v = 1.1
mesh_outputs, _ = model.shape_model.extract_geometry(
latents,
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
octree_depth=octree_depth
)
assert len(mesh_outputs) == 1, "Only support single mesh output for gradio demo"
mesh = trimesh.Trimesh(mesh_outputs[0][0], mesh_outputs[0][1])
# filepath = f"{cached_dir}/{time.time()}.obj"
filepath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
mesh.export(filepath, include_normals=True)
if 'Remesh' in more:
remeshed_filepath = tempfile.NamedTemporaryFile(suffix=f"_remeshed.obj", delete=False).name
print("Remeshing with Instant Meshes...")
command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -o {remeshed_filepath}"
os.system(command)
filepath = remeshed_filepath
return filepath
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="./ckpts/craftsman-v1-5", help="Path to the object file",)
parser.add_argument("--cached_dir", type=str, default="")
parser.add_argument("--device", type=int, default=0)
args = parser.parse_args()
cached_dir = args.cached_dir
if cached_dir != "":
os.makedirs(args.cached_dir, exist_ok=True)
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu")
print(f"using device: {device}")
# for input image
background_choice = OrderedDict({
"Alpha as Mask": "Alpha as Mask",
"Auto Remove Background": "Auto Remove Background",
"Original Image": "Original Image",
})
generator = torch.Generator(device)
# for 3D latent set diffusion
if args.model_path == "":
ckpt_path = hf_hub_download(repo_id="craftsman3d/craftsman-v1-5", filename="model.ckpt", repo_type="model")
config_path = hf_hub_download(repo_id="craftsman3d/craftsman-v1-5", filename="config.yaml", repo_type="model")
else:
ckpt_path = os.path.join(args.model_path, "model.ckpt")
config_path = os.path.join(args.model_path, "config.yaml")
scheluder_dict = OrderedDict({
"DDIMScheduler": 'diffusers.schedulers.DDIMScheduler',
# "DPMSolverMultistepScheduler": 'diffusers.schedulers.DPMSolverMultistepScheduler', # not support yet
# "UniPCMultistepScheduler": 'diffusers.schedulers.UniPCMultistepScheduler', # not support yet
})
# main GUI
custom_theme = gr.themes.Soft(primary_hue="blue").set(
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_200")
custom_css = '''#disp_image {
text-align: center; /* Horizontally center the content */
}'''
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row():
with gr.Column(scale=2):
with gr.Column():
# input image
with gr.Row():
image_input = gr.Image(
label="Image Input",
image_mode="RGBA",
sources="upload",
type="pil",
)
run_btn = gr.Button('Generate', variant='primary', interactive=True)
with gr.Row():
gr.Markdown('''Try a different <b>seed and MV Model</b> for better results. Good Luck :)''')
with gr.Row():
seed = gr.Number(0, label='Seed', show_label=True)
more = gr.CheckboxGroup(["Remesh"], label="More", show_label=False)
target_face_count = gr.Number(2000, label='Target Face Count', show_label=True)
with gr.Row():
gr.Examples(
examples=[os.path.join("./assets/examples", i) for i in os.listdir("./assets/examples")],
inputs=[image_input],
examples_per_page=8
)
with gr.Column(scale=4):
with gr.Row():
output_model_obj = gr.Model3D(
label="Output Model (OBJ Format)",
camera_position=(90.0, 90.0, 3.5),
interactive=False,
)
with gr.Row():
gr.Markdown('''*please note that the model is fliped due to the gradio viewer, please download the obj file and you will get the correct orientation.''')
with gr.Accordion('Advanced options', open=False):
with gr.Row():
background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys()))
rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"])
foreground_ratio = gr.Slider(label="Foreground Ratio", value=1.0, minimum=0.5, maximum=1.0, step=0.01)
with gr.Row():
guidance_scale = gr.Number(label="3D Guidance Scale", value=5.0, minimum=3.0, maximum=10.0)
steps = gr.Number(value=50, minimum=20, maximum=100, label="3D Sample Steps")
with gr.Row():
scheduler = gr.Dropdown(label="scheluder", value="DDIMScheduler",choices=list(scheluder_dict.keys()))
octree_depth = gr.Slider(label="Octree Depth", value=7, minimum=4, maximum=8, step=1)
gr.Markdown(_CITE_)
outputs = [output_model_obj]
rmbg = RMBG()
# model = load_model(ckpt_path, config_path, device)
cfg = load_config(config_path)
model = craftsman.find(cfg.system_type)(cfg.system)
print(f"Restoring states from the checkpoint path at {ckpt_path} with config {cfg}")
ckpt = torch.load(ckpt_path, map_location=torch.device('cpu'))
model.load_state_dict(
ckpt["state_dict"] if "state_dict" in ckpt else ckpt,
)
model = model.to(device).eval()
run_btn.click(fn=check_input_image, inputs=[image_input]
).success(
fn=rmbg.run,
inputs=[rmbg_type, image_input, foreground_ratio, background_choice],
outputs=[image_input]
).success(
fn=image2mesh,
inputs=[image_input, more, scheduler, guidance_scale, steps, seed, target_face_count, octree_depth],
outputs=outputs,
api_name="generate_img2obj")
demo.queue().launch(share=True, allowed_paths=[args.cached_dir])