File size: 11,406 Bytes
0f079b2
 
 
 
 
 
 
 
 
8133633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8133633
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from craftsman.utils.typing import *
from craftsman.utils.checkpoint import checkpoint

from .utils import init_linear, MLP
from timm.models.vision_transformer import Attention

def scaled_dot_product_gqa(
    query: Tensor,
    key: Tensor,
    value: Tensor,
    dropout: float = 0.0,
    scale: Optional[float] = None,
    mask: Optional[Tensor] = None,
    is_causal: Optional[bool] = None,
    need_weights: bool = False,
    average_attn_weights: bool = False,
    force_grouped: bool = False,
):
    """Scaled dot product attention with support for grouped queries.

    Einstein notation:
    - b: batch size
    - n / s: sequence length
    - h: number of heads
    - g: number of groups
    - d: dimension of query/key/value

    Args:
        query: Query tensor of shape (b, n, h, d)
        key: Key tensor of shape (b, s, h, d)
        value: Value tensor of shape (b, s, h, d)
        dropout: Dropout probability (default: 0.0)
        scale: Scale factor for query (default: d_query ** 0.5)
        mask: Mask tensor of shape (b, n, s) or (b, s). If 'ndim == 2', the mask is
            applied to all 'n' rows of the attention matrix. (default: None)
        force_grouped: If True, apply grouped-query attention even if the number of
            heads is equal for query, key, and value. (default: False)

    Returns:
        2-tuple of:
        - Attention output with shape (b, n, h, d)
        - (Optional) Attention weights with shape (b, h, n, s). Only returned if
          'need_weights' is True.
    """
    if (mask is not None) and (is_causal is not None):
        raise ValueError(
            "Only one of 'mask' and 'is_causal' should be provided, but got both."
        )
    elif not query.ndim == key.ndim == value.ndim == 4:
        raise ValueError(
            f"Expected query, key, and value to be 4-dimensional, but got shapes "
            f"{query.shape}, {key.shape}, and {value.shape}."
        )

    # Move sequence length dimension to axis 2.
    # This makes the attention operations below *much* faster.
    query = rearrange(query, "b n h d -> b h n d")
    key = rearrange(key, "b s h d -> b h s d")
    value = rearrange(value, "b s h d -> b h s d")

    bq, hq, nq, dq = query.shape
    bk, hk, nk, dk = key.shape
    bv, hv, nv, dv = value.shape
    if not (bq == bk == bv and dq == dk == dv):
        raise ValueError(
            "Expected query, key, and value to have the same batch size (dim=0) and "
            f"embedding dimension (dim=3), but got query: {query.shape}, "
            f"key: {key.shape}, and value: {value.shape}."
        )
    elif (hk != hv) or (nk != nv):
        raise ValueError(
            "Expected key and value to have the same size in dimensions 1 and 2, but "
            f"got key: {key.shape} and value: {value.shape}."
        )
    elif hq % hk != 0:
        raise ValueError(
            "Expected query heads to be a multiple of key/value heads, but got "
            f"query: {query.shape} and key/value: {key.shape}."
        )

    if scale is None:
        scale = query.size(-1) ** 0.5
    query = query / scale

    num_head_groups = hq // hk
    query = rearrange(query, "b (h g) n d -> b g h n d", g=num_head_groups)
    similarity = einsum(query, key, "b g h n d, b h s d -> b g h n s")

    if is_causal:
        # Mask out the upper triangular portion of the attention matrix. This prevents
        # the model from attending to tokens in the future.
        mask = torch.ones((bq, nq, nk), device=query.device, dtype=torch.bool).tril_()

    if mask is not None:
        # Expand mask to match the shape of the attention matrix.
        # If mask is 2D, assume that it is applied to the key/value sequence dimension.
        # Else if mask is 3D, assume that it is applied to the query/key/value sequence
        # dimension for all attention heads.
        #
        if mask.ndim == 2:
            mask = rearrange(mask, "b s -> b () () () s")
        elif mask.ndim == 3:
            mask = rearrange(mask, "b n s -> b () () n s")
        # Mask similarity values by setting them to negative infinity.  This guarantees
        # that they will not contribute to the softmax computation below.
        similarity.masked_fill_(~mask, torch.finfo(similarity.dtype).min)

    attention = F.softmax(similarity, dim=-1)
    if dropout > 0.0:
        attention = F.dropout(attention, p=dropout)

    # Apply attention matrix to the value Tensor.
    out = einsum(attention, value, "b g h n s, b h s d -> b g h n d")
    # Move head dimension back to axis 2
    out = rearrange(out, "b g h n d -> b n (h g) d")

    attn_weights: Optional[Tensor] = None
    if need_weights:
        # Move the sequence dimensions back to positions 1, 2.  Move the head dimension
        # to position 3.  This more closely matches the return shape of the attention
        # output: (b, n, h, d).
        attn_weights = rearrange(attention, "b g h n s -> b n s (h g)")
        if average_attn_weights:
            attn_weights = attn_weights.mean(dim=1)

    return out, attn_weights

class MultiheadAttention(nn.Module):
    def __init__(
        self,
        *,
        n_ctx: int,
        width: int,
        heads: int,
        init_scale: float,
        qkv_bias: bool,
        use_flash: bool = False
    ):
        super().__init__()
        self.n_ctx = n_ctx
        self.width = width
        self.heads = heads
        self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias)
        self.c_proj = nn.Linear(width, width)
        self.attention = QKVMultiheadAttention(heads=heads, n_ctx=n_ctx, use_flash=use_flash)
        init_linear(self.c_qkv, init_scale)
        init_linear(self.c_proj, init_scale)

    def forward(self, x):
        x = self.c_qkv(x)
        x = checkpoint(self.attention, (x,), (), True)
        x = self.c_proj(x)
        return x


class QKVMultiheadAttention(nn.Module):
    def __init__(self, *, heads: int, n_ctx: int, use_flash: bool = False):
        super().__init__()
        self.heads = heads
        self.n_ctx = n_ctx
        self.use_flash = use_flash

    def forward(self, qkv):
        bs, n_ctx, width = qkv.shape
        attn_ch = width // self.heads // 3
        scale = 1 / math.sqrt(math.sqrt(attn_ch))
        qkv = qkv.view(bs, n_ctx, self.heads, -1)
        q, k, v = torch.split(qkv, attn_ch, dim=-1)

        if self.use_flash:
            q = q.permute(0, 2, 1, 3)
            k = k.permute(0, 2, 1, 3)
            v = v.permute(0, 2, 1, 3)
            out = F.scaled_dot_product_attention(q, k, v).permute(0, 2, 1, 3).reshape(bs, n_ctx, -1)
        else:
            weight = torch.einsum(
                "bthc,bshc->bhts", q * scale, k * scale
            )  # More stable with f16 than dividing afterwards
            wdtype = weight.dtype
            weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
            out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)

        return out

class ResidualAttentionBlock(nn.Module):
    def __init__(
        self,
        *,
        n_ctx: int,
        width: int,
        heads: int,
        init_scale: float = 1.0,
        qkv_bias: bool = True,
        use_flash: bool = False,
        use_checkpoint: bool = False
    ):
        super().__init__()

        self.use_checkpoint = use_checkpoint

        self.attn = MultiheadAttention(
            n_ctx=n_ctx,
            width=width,
            heads=heads,
            init_scale=init_scale,
            qkv_bias=qkv_bias,
            use_flash=use_flash
        )
        self.ln_1 = nn.LayerNorm(width)
        self.mlp = MLP(width=width, init_scale=init_scale)
        self.ln_2 = nn.LayerNorm(width)

    def _forward(self, x: torch.Tensor):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x

    def forward(self, x: torch.Tensor):
        return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)


class MultiheadCrossAttention(nn.Module):
    def __init__(
        self,
        *,
        width: int,
        heads: int,
        init_scale: float,
        qkv_bias: bool = True,
        use_flash: bool = False,
        n_data: Optional[int] = None,
        data_width: Optional[int] = None,
    ):
        super().__init__()
        self.n_data = n_data
        self.width = width
        self.heads = heads
        self.data_width = width if data_width is None else data_width
        self.c_q = nn.Linear(width, width, bias=qkv_bias)
        self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias)
        self.c_proj = nn.Linear(width, width)
        self.attention = QKVMultiheadCrossAttention(
            heads=heads, n_data=n_data, use_flash=use_flash
        )
        init_linear(self.c_q, init_scale)
        init_linear(self.c_kv, init_scale)
        init_linear(self.c_proj, init_scale)

    def forward(self, x, data):
        x = self.c_q(x)
        data = self.c_kv(data)
        x = checkpoint(self.attention, (x, data), (), True)
        x = self.c_proj(x)
        return x


class QKVMultiheadCrossAttention(nn.Module):
    def __init__(self, *, heads: int, use_flash: bool = False, n_data: Optional[int] = None):

        super().__init__()
        self.heads = heads
        self.n_data = n_data
        self.use_flash = use_flash

    def forward(self, q, kv):
        _, n_ctx, _ = q.shape
        bs, n_data, width = kv.shape
        attn_ch = width // self.heads // 2
        scale = 1 / math.sqrt(math.sqrt(attn_ch))
        q = q.view(bs, n_ctx, self.heads, -1)
        kv = kv.view(bs, n_data, self.heads, -1)
        k, v = torch.split(kv, attn_ch, dim=-1)

        if self.use_flash:
            
            q = q.permute(0, 2, 1, 3)
            k = k.permute(0, 2, 1, 3)
            v = v.permute(0, 2, 1, 3)
            out = F.scaled_dot_product_attention(q, k, v).permute(0, 2, 1, 3).reshape(bs, n_ctx, -1)
        else:
            weight = torch.einsum(
                "bthc,bshc->bhts", q * scale, k * scale
            )  # More stable with f16 than dividing afterwards
            wdtype = weight.dtype
            weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
            out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)

        return out


class ResidualCrossAttentionBlock(nn.Module):
    def __init__(
        self,
        *,
        n_data: Optional[int] = None,
        width: int,
        heads: int,
        data_width: Optional[int] = None,
        init_scale: float = 0.25,
        qkv_bias: bool = True,
        use_flash: bool = False
    ):
        super().__init__()

        if data_width is None:
            data_width = width

        self.attn = MultiheadCrossAttention(
            n_data=n_data,
            width=width,
            heads=heads,
            data_width=data_width,
            init_scale=init_scale,
            qkv_bias=qkv_bias,
            use_flash=use_flash,
        )
        self.ln_1 = nn.LayerNorm(width)
        self.ln_2 = nn.LayerNorm(data_width)
        self.mlp = MLP(width=width, init_scale=init_scale)
        self.ln_3 = nn.LayerNorm(width)

    def forward(self, x: torch.Tensor, data: torch.Tensor):
        x = x + self.attn(self.ln_1(x), self.ln_2(data))
        x = x + self.mlp(self.ln_3(x))
        return x