Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,406 Bytes
0f079b2 8133633 0f079b2 8133633 0f079b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from craftsman.utils.typing import *
from craftsman.utils.checkpoint import checkpoint
from .utils import init_linear, MLP
from timm.models.vision_transformer import Attention
def scaled_dot_product_gqa(
query: Tensor,
key: Tensor,
value: Tensor,
dropout: float = 0.0,
scale: Optional[float] = None,
mask: Optional[Tensor] = None,
is_causal: Optional[bool] = None,
need_weights: bool = False,
average_attn_weights: bool = False,
force_grouped: bool = False,
):
"""Scaled dot product attention with support for grouped queries.
Einstein notation:
- b: batch size
- n / s: sequence length
- h: number of heads
- g: number of groups
- d: dimension of query/key/value
Args:
query: Query tensor of shape (b, n, h, d)
key: Key tensor of shape (b, s, h, d)
value: Value tensor of shape (b, s, h, d)
dropout: Dropout probability (default: 0.0)
scale: Scale factor for query (default: d_query ** 0.5)
mask: Mask tensor of shape (b, n, s) or (b, s). If 'ndim == 2', the mask is
applied to all 'n' rows of the attention matrix. (default: None)
force_grouped: If True, apply grouped-query attention even if the number of
heads is equal for query, key, and value. (default: False)
Returns:
2-tuple of:
- Attention output with shape (b, n, h, d)
- (Optional) Attention weights with shape (b, h, n, s). Only returned if
'need_weights' is True.
"""
if (mask is not None) and (is_causal is not None):
raise ValueError(
"Only one of 'mask' and 'is_causal' should be provided, but got both."
)
elif not query.ndim == key.ndim == value.ndim == 4:
raise ValueError(
f"Expected query, key, and value to be 4-dimensional, but got shapes "
f"{query.shape}, {key.shape}, and {value.shape}."
)
# Move sequence length dimension to axis 2.
# This makes the attention operations below *much* faster.
query = rearrange(query, "b n h d -> b h n d")
key = rearrange(key, "b s h d -> b h s d")
value = rearrange(value, "b s h d -> b h s d")
bq, hq, nq, dq = query.shape
bk, hk, nk, dk = key.shape
bv, hv, nv, dv = value.shape
if not (bq == bk == bv and dq == dk == dv):
raise ValueError(
"Expected query, key, and value to have the same batch size (dim=0) and "
f"embedding dimension (dim=3), but got query: {query.shape}, "
f"key: {key.shape}, and value: {value.shape}."
)
elif (hk != hv) or (nk != nv):
raise ValueError(
"Expected key and value to have the same size in dimensions 1 and 2, but "
f"got key: {key.shape} and value: {value.shape}."
)
elif hq % hk != 0:
raise ValueError(
"Expected query heads to be a multiple of key/value heads, but got "
f"query: {query.shape} and key/value: {key.shape}."
)
if scale is None:
scale = query.size(-1) ** 0.5
query = query / scale
num_head_groups = hq // hk
query = rearrange(query, "b (h g) n d -> b g h n d", g=num_head_groups)
similarity = einsum(query, key, "b g h n d, b h s d -> b g h n s")
if is_causal:
# Mask out the upper triangular portion of the attention matrix. This prevents
# the model from attending to tokens in the future.
mask = torch.ones((bq, nq, nk), device=query.device, dtype=torch.bool).tril_()
if mask is not None:
# Expand mask to match the shape of the attention matrix.
# If mask is 2D, assume that it is applied to the key/value sequence dimension.
# Else if mask is 3D, assume that it is applied to the query/key/value sequence
# dimension for all attention heads.
#
if mask.ndim == 2:
mask = rearrange(mask, "b s -> b () () () s")
elif mask.ndim == 3:
mask = rearrange(mask, "b n s -> b () () n s")
# Mask similarity values by setting them to negative infinity. This guarantees
# that they will not contribute to the softmax computation below.
similarity.masked_fill_(~mask, torch.finfo(similarity.dtype).min)
attention = F.softmax(similarity, dim=-1)
if dropout > 0.0:
attention = F.dropout(attention, p=dropout)
# Apply attention matrix to the value Tensor.
out = einsum(attention, value, "b g h n s, b h s d -> b g h n d")
# Move head dimension back to axis 2
out = rearrange(out, "b g h n d -> b n (h g) d")
attn_weights: Optional[Tensor] = None
if need_weights:
# Move the sequence dimensions back to positions 1, 2. Move the head dimension
# to position 3. This more closely matches the return shape of the attention
# output: (b, n, h, d).
attn_weights = rearrange(attention, "b g h n s -> b n s (h g)")
if average_attn_weights:
attn_weights = attn_weights.mean(dim=1)
return out, attn_weights
class MultiheadAttention(nn.Module):
def __init__(
self,
*,
n_ctx: int,
width: int,
heads: int,
init_scale: float,
qkv_bias: bool,
use_flash: bool = False
):
super().__init__()
self.n_ctx = n_ctx
self.width = width
self.heads = heads
self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias)
self.c_proj = nn.Linear(width, width)
self.attention = QKVMultiheadAttention(heads=heads, n_ctx=n_ctx, use_flash=use_flash)
init_linear(self.c_qkv, init_scale)
init_linear(self.c_proj, init_scale)
def forward(self, x):
x = self.c_qkv(x)
x = checkpoint(self.attention, (x,), (), True)
x = self.c_proj(x)
return x
class QKVMultiheadAttention(nn.Module):
def __init__(self, *, heads: int, n_ctx: int, use_flash: bool = False):
super().__init__()
self.heads = heads
self.n_ctx = n_ctx
self.use_flash = use_flash
def forward(self, qkv):
bs, n_ctx, width = qkv.shape
attn_ch = width // self.heads // 3
scale = 1 / math.sqrt(math.sqrt(attn_ch))
qkv = qkv.view(bs, n_ctx, self.heads, -1)
q, k, v = torch.split(qkv, attn_ch, dim=-1)
if self.use_flash:
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
out = F.scaled_dot_product_attention(q, k, v).permute(0, 2, 1, 3).reshape(bs, n_ctx, -1)
else:
weight = torch.einsum(
"bthc,bshc->bhts", q * scale, k * scale
) # More stable with f16 than dividing afterwards
wdtype = weight.dtype
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
return out
class ResidualAttentionBlock(nn.Module):
def __init__(
self,
*,
n_ctx: int,
width: int,
heads: int,
init_scale: float = 1.0,
qkv_bias: bool = True,
use_flash: bool = False,
use_checkpoint: bool = False
):
super().__init__()
self.use_checkpoint = use_checkpoint
self.attn = MultiheadAttention(
n_ctx=n_ctx,
width=width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
use_flash=use_flash
)
self.ln_1 = nn.LayerNorm(width)
self.mlp = MLP(width=width, init_scale=init_scale)
self.ln_2 = nn.LayerNorm(width)
def _forward(self, x: torch.Tensor):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
def forward(self, x: torch.Tensor):
return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)
class MultiheadCrossAttention(nn.Module):
def __init__(
self,
*,
width: int,
heads: int,
init_scale: float,
qkv_bias: bool = True,
use_flash: bool = False,
n_data: Optional[int] = None,
data_width: Optional[int] = None,
):
super().__init__()
self.n_data = n_data
self.width = width
self.heads = heads
self.data_width = width if data_width is None else data_width
self.c_q = nn.Linear(width, width, bias=qkv_bias)
self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias)
self.c_proj = nn.Linear(width, width)
self.attention = QKVMultiheadCrossAttention(
heads=heads, n_data=n_data, use_flash=use_flash
)
init_linear(self.c_q, init_scale)
init_linear(self.c_kv, init_scale)
init_linear(self.c_proj, init_scale)
def forward(self, x, data):
x = self.c_q(x)
data = self.c_kv(data)
x = checkpoint(self.attention, (x, data), (), True)
x = self.c_proj(x)
return x
class QKVMultiheadCrossAttention(nn.Module):
def __init__(self, *, heads: int, use_flash: bool = False, n_data: Optional[int] = None):
super().__init__()
self.heads = heads
self.n_data = n_data
self.use_flash = use_flash
def forward(self, q, kv):
_, n_ctx, _ = q.shape
bs, n_data, width = kv.shape
attn_ch = width // self.heads // 2
scale = 1 / math.sqrt(math.sqrt(attn_ch))
q = q.view(bs, n_ctx, self.heads, -1)
kv = kv.view(bs, n_data, self.heads, -1)
k, v = torch.split(kv, attn_ch, dim=-1)
if self.use_flash:
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
out = F.scaled_dot_product_attention(q, k, v).permute(0, 2, 1, 3).reshape(bs, n_ctx, -1)
else:
weight = torch.einsum(
"bthc,bshc->bhts", q * scale, k * scale
) # More stable with f16 than dividing afterwards
wdtype = weight.dtype
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
return out
class ResidualCrossAttentionBlock(nn.Module):
def __init__(
self,
*,
n_data: Optional[int] = None,
width: int,
heads: int,
data_width: Optional[int] = None,
init_scale: float = 0.25,
qkv_bias: bool = True,
use_flash: bool = False
):
super().__init__()
if data_width is None:
data_width = width
self.attn = MultiheadCrossAttention(
n_data=n_data,
width=width,
heads=heads,
data_width=data_width,
init_scale=init_scale,
qkv_bias=qkv_bias,
use_flash=use_flash,
)
self.ln_1 = nn.LayerNorm(width)
self.ln_2 = nn.LayerNorm(data_width)
self.mlp = MLP(width=width, init_scale=init_scale)
self.ln_3 = nn.LayerNorm(width)
def forward(self, x: torch.Tensor, data: torch.Tensor):
x = x + self.attn(self.ln_1(x), self.ln_2(data))
x = x + self.mlp(self.ln_3(x))
return x |