Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,344 Bytes
8133633 9505fe5 8133633 9505fe5 8133633 9505fe5 8133633 9505fe5 8133633 9505fe5 8133633 9505fe5 8133633 9505fe5 8133633 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import math
import os
import json
import re
import cv2
from dataclasses import dataclass, field
import random
import imageio
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from PIL import Image
from craftsman.utils.typing import *
def fit_bounding_box(img, mask, marign_pix_dis, background_color):
# alpha_channel = img[:, :, 3]
alpha_channel = mask.numpy().squeeze()
height = np.any(alpha_channel, axis=1)
width = np.any(alpha_channel, axis=0)
h_min, h_max = np.where(height)[0][[0, -1]]
w_min, w_max = np.where(width)[0][[0, -1]]
box_height = h_max - h_min
box_width = w_max - w_min
cropped_image = img[h_min:h_max, w_min:w_max]
if box_height > box_width:
new_hight = 512 - 2 * marign_pix_dis
new_width = int((512 - 2 * marign_pix_dis) / (box_height) * box_width) + 1
else:
new_hight = int((512 - 2 * marign_pix_dis) / (box_width) * box_height) + 1
new_width = 512 - 2 * marign_pix_dis
new_h_min_pos = int((512 - new_hight) / 2 + 1)
new_h_max_pos = new_hight + new_h_min_pos
new_w_min_pos = int((512 - new_width) / 2 + 1)
new_w_max_pos = new_width + new_w_min_pos
# extend of the bbox
new_image = np.full((512, 512, 3), background_color)
new_image[new_h_min_pos:new_h_max_pos, new_w_min_pos:new_w_max_pos, :] = cv2.resize(cropped_image.numpy(), (new_width, new_hight))
return torch.from_numpy(new_image)
@dataclass
class BaseDataModuleConfig:
local_dir: str = None
################################# Geometry part #################################
load_geometry: bool = True # whether to load geometry data
geo_data_type: str = "occupancy" # occupancy, sdf
geo_data_path: str = "" # path to the geometry data
# for occupancy and sdf data
n_samples: int = 4096 # number of points in input point cloud
upsample_ratio: int = 1 # upsample ratio for input point cloud
sampling_strategy: Optional[str] = None # sampling strategy for input point cloud
scale: float = 1.0 # scale of the input point cloud and target supervision
load_supervision: bool = True # whether to load supervision
supervision_type: str = "occupancy" # occupancy, sdf, tsdf
tsdf_threshold: float = 0.05 # threshold for truncating sdf values, used when input is sdf
n_supervision: int = 10000 # number of points in supervision
################################# Image part #################################
load_image: bool = False # whether to load images
image_data_path: str = "" # path to the image data
image_type: str = "rgb" # rgb, normal
background_color: Tuple[float, float, float] = field(
default_factory=lambda: (0.5, 0.5, 0.5)
)
idx: Optional[List[int]] = None # index of the image to load
n_views: int = 1 # number of views
marign_pix_dis: int = 30 # margin of the bounding box
batch_size: int = 32
num_workers: int = 8
class BaseDataset(Dataset):
def __init__(self, cfg: Any, split: str) -> None:
super().__init__()
self.cfg: BaseDataModuleConfig = cfg
self.split = split
self.uids = json.load(open(f'{cfg.local_dir}/{split}.json'))
print(f"Loaded {len(self.uids)} {split} uids")
def __len__(self):
return len(self.uids)
def _load_shape_from_occupancy_or_sdf(self, index: int) -> Dict[str, Any]:
if self.cfg.geo_data_type == "occupancy":
# for input point cloud, using Objaverse-MIX data
pointcloud = np.load(f'{self.cfg.geo_data_path}/{self.uids[index]}/pointcloud.npz')
surface = np.asarray(pointcloud['points']) * 2 # range from -1 to 1
normal = np.asarray(pointcloud['normals'])
surface = np.concatenate([surface, normal], axis=1)
elif self.cfg.geo_data_type == "sdf":
# for sdf data with our own format
data = np.load(f'{self.cfg.geo_data_path}/{self.uids[index]}.npz')
# for input point cloud
surface = data["surface"]
else:
raise NotImplementedError(f"Data type {self.cfg.geo_data_type} not implemented")
# random sampling
if self.cfg.sampling_strategy == "random":
rng = np.random.default_rng()
ind = rng.choice(surface.shape[0], self.cfg.upsample_ratio * self.cfg.n_samples, replace=False)
surface = surface[ind]
elif self.cfg.sampling_strategy == "fps":
import fpsample
kdline_fps_samples_idx = fpsample.bucket_fps_kdline_sampling(surface[:, :3], self.cfg.n_samples, h=5)
surface = surface[kdline_fps_samples_idx]
elif self.cfg.sampling_strategy is None:
pass
else:
raise NotImplementedError(f"sampling strategy {self.cfg.sampling_strategy} not implemented")
# rescale data
surface[:, :3] = surface[:, :3] * self.cfg.scale # target scale
ret = {
"uid": self.uids[index].split('/')[-1],
"surface": surface.astype(np.float32),
}
return ret
def _load_shape_supervision_occupancy_or_sdf(self, index: int) -> Dict[str, Any]:
# for supervision
ret = {}
if self.cfg.data_type == "occupancy":
points = np.load(f'{self.cfg.geo_data_path}/{self.uids[index]}/points.npz')
rand_points = np.asarray(points['points']) * 2 # range from -1.1 to 1.1
occupancies = np.asarray(points['occupancies'])
occupancies = np.unpackbits(occupancies)
elif self.cfg.data_type == "sdf":
data = np.load(f'{self.cfg.geo_data_path}/{self.uids[index]}.npz')
rand_points = data['rand_points']
sdfs = data['sdfs']
else:
raise NotImplementedError(f"Data type {self.cfg.data_type} not implemented")
# random sampling
rng = np.random.default_rng()
ind = rng.choice(rand_points.shape[0], self.cfg.n_supervision, replace=False)
rand_points = rand_points[ind]
rand_points = rand_points * self.cfg.scale
ret["rand_points"] = rand_points.astype(np.float32)
if self.cfg.data_type == "occupancy":
assert self.cfg.supervision_type == "occupancy", "Only occupancy supervision is supported for occupancy data"
occupancies = occupancies[ind]
ret["occupancies"] = occupancies.astype(np.float32)
elif self.cfg.data_type == "sdf":
if self.cfg.supervision_type == "sdf":
ret["sdf"] = sdfs[ind].flatten().astype(np.float32)
elif self.cfg.supervision_type == "occupancy":
ret["occupancies"] = np.where(sdfs[ind].flatten() < 1e-3, 0, 1).astype(np.float32)
elif self.cfg.supervision_type == "tsdf":
ret["sdf"] = sdfs[ind].flatten().astype(np.float32).clip(-self.cfg.tsdf_threshold, self.cfg.tsdf_threshold) / self.cfg.tsdf_threshold
else:
raise NotImplementedError(f"Supervision type {self.cfg.supervision_type} not implemented")
return ret
def _load_image(self, index: int) -> Dict[str, Any]:
def _load_single_image(img_path, background_color, marign_pix_dis=None):
img = torch.from_numpy(
np.asarray(
Image.fromarray(imageio.v2.imread(img_path))
.convert("RGBA")
)
/ 255.0
).float()
mask: Float[Tensor, "H W 1"] = img[:, :, -1:]
image: Float[Tensor, "H W 3"] = img[:, :, :3] * mask + background_color[
None, None, :
] * (1 - mask)
if marign_pix_dis is not None:
image = fit_bounding_box(image, mask, marign_pix_dis, background_color)
return image, mask
if self.cfg.background_color == [-1, -1, -1]:
background_color = torch.randint(0, 256, (3,))
else:
background_color = torch.as_tensor(self.cfg.background_color)
ret = {}
if self.cfg.image_type == "rgb" or self.cfg.image_type == "normal":
assert self.cfg.n_views == 1, "Only single view is supported for single image"
sel_idx = random.choice(self.cfg.idx)
ret["sel_image_idx"] = sel_idx
if self.cfg.image_type == "rgb":
img_path = f'{self.cfg.image_data_path}/' + "/".join(self.uids[index].split('/')[-2:]) + f"/{'{:04d}'.format(sel_idx)}_rgb.jpeg"
elif self.cfg.image_type == "normal":
img_path = f'{self.cfg.image_data_path}/' + "/".join(self.uids[index].split('/')[-2:]) + f"/{'{:04d}'.format(sel_idx)}_normal.jpeg"
ret["image"], ret["mask"] = _load_single_image(img_path, background_color, self.cfg.marign_pix_dis)
else:
raise NotImplementedError(f"Image type {self.cfg.image_type} not implemented")
return ret
def _get_data(self, index):
ret = {"uid": self.uids[index]}
# load geometry
if self.cfg.load_geometry:
if self.cfg.geo_data_type == "occupancy" or self.cfg.geo_data_type == "sdf":
# load shape
ret = self._load_shape_from_occupancy_or_sdf(index)
# load supervision for shape
if self.cfg.load_supervision:
ret.update(self._load_shape_supervision_occupancy_or_sdf(index))
else:
raise NotImplementedError(f"Geo data type {self.cfg.geo_data_type} not implemented")
# load image
if self.cfg.load_image:
ret.update(self._load_image(index))
return ret
def __getitem__(self, index):
try:
return self._get_data(index)
except Exception as e:
print(f"Error in {self.uids[index]}: {e}")
return self.__getitem__(np.random.randint(len(self)))
def collate(self, batch):
from torch.utils.data._utils.collate import default_collate_fn_map
return torch.utils.data.default_collate(batch)
|