Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,748 Bytes
0f079b2 8133633 0f079b2 8133633 0f079b2 8133633 0f079b2 8133633 0f079b2 8133633 0f079b2 8133633 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import random
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
from dataclasses import dataclass
from torchvision.transforms import Normalize
from torchvision.transforms import InterpolationMode
from torchvision.transforms.transforms import _interpolation_modes_from_int
from transformers import CLIPModel, CLIPTokenizer, CLIPImageProcessor
from transformers.utils import ModelOutput
from typing import Iterable, Optional, Union, List
import craftsman
from craftsman.utils.base import BaseModule
from craftsman.utils.typing import *
ImageType = Union[np.ndarray, torch.Tensor, Image.Image]
class BaseEmbedder(BaseModule):
@dataclass
class Config(BaseModule.Config):
pretrained_model_name_or_path: Optional[str] = None # the pretrained model name or path
encode_camera: bool = False # whether to encode camera
camera_embeds_type: str = "sincos" # the type of camera embeds
camera_embeds_dim: Optional[int] = None # the dimension of camera embeds
n_views: int = 1 # the number of views
empty_embeds_ratio: float = 0.1 # the ratio of empty embeds
zero_uncond_embeds: bool = True
normalize_embeds: bool = False # whether to normalize the embeds
cfg: Config
def configure(self) -> None:
super().configure()
if self.cfg.encode_camera:
self.distance = 1.0
self.register_buffer(
"cameras",
torch.as_tensor([
[[1, 0, 0, 0],
[0, 0, -1, -self.distance],
[0, 1, 0, 0],
[0, 0, 0, 1]], # front to back
[[0, 0, 1, self.distance],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1]], # right to left
[[-1, 0, 0, 0],
[0, 0, 1, self.distance],
[0, 1, 0, 0],
[0, 0, 0, 1]], # back to front
[[0, 0, -1, -self.distance],
[-1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1]], # left to right
], dtype=torch.float32),
)
def encode_image(self, images: Iterable[Optional[ImageType]], camera_embeds: Optional[torch.Tensor] = None, **kwargs) -> torch.FloatTensor:
pass
def encode_camera(self, c2ws: torch.Tensor):
if self.cfg.camera_embeds_type == "sincos":
assert c2ws.shape[-1] == 4 and c2ws.shape[-2] == 4, f"Invalid c2ws shape: {c2ws.shape}"
c2ws = c2ws.view(-1, 16)
return torch.cat([torch.sin(c2ws), torch.cos(c2ws)], dim=-1)
else:
raise NotImplementedError(f"Unknown camera_embeds_type: {self.cfg.camera_embeds_type}")
def post_process_embeds(self, visual_embeds):
bs =visual_embeds.shape[0]
if self.cfg.normalize_embeds:
# post-process the visual embeds
if visual_embeds is not None:
visual_embeds = visual_embeds / visual_embeds.norm(dim=-1, keepdim=True)
assert visual_embeds is not None
# return visual_embeds
return visual_embeds
def forward(self, batch):
if batch["image"].dim() == 5:
bs = batch["image"].shape[0] * batch["image"].shape[1]
else:
bs = batch["image"].shape[0]
visual_embeds = None
if random.random() < self.cfg.empty_embeds_ratio:
if "image" in batch or "image_embeds" in batch:
visual_embeds = self.empty_image_embeds.repeat(bs, 1, 1)
elif "mvimages" in batch or "mvimage_embeds" in batch:
visual_embeds = self.empty_image_embeds.unsqueeze(1).repeat(bs, 1, 1, 1)
else:
# for visual inputs
if "image" in batch:
if self.cfg.encode_camera:
visual_embeds = self.encode_image(batch["image"], cameras=batch["c2w"])
else:
visual_embeds = self.encode_image(batch["image"])
elif "mvimages" in batch:
n_views = batch["mvimages"].shape[1]
if self.cfg.encode_camera:
visual_embeds = self.encode_image(
batch["mvimages"].view(-1, *batch["mvimages"].shape[-3:]), \
cameras=batch["c2ws"]).view(bs, n_views, *self.empty_image_embeds.shape[-2:])
else:
visual_embeds = self.encode_image(
batch["mvimages"].view(-1, *batch["mvimages"].shape[-3:])).view(bs, n_views, *self.empty_image_embeds.shape[-2:])
return self.post_process_embeds(visual_embeds)
|