{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "NinXqXib_ST4",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "cdf8180e-242a-49b0-b551-8fab2a072566"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.44.2)\n",
"Collecting datasets\n",
" Downloading datasets-3.1.0-py3-none-any.whl.metadata (20 kB)\n",
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.16.1)\n",
"Requirement already satisfied: huggingface-hub<1.0,>=0.23.2 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.24.7)\n",
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.26.4)\n",
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (24.1)\n",
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0.2)\n",
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2024.9.11)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.32.3)\n",
"Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.4.5)\n",
"Requirement already satisfied: tokenizers<0.20,>=0.19 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.19.1)\n",
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.66.6)\n",
"Requirement already satisfied: pyarrow>=15.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (17.0.0)\n",
"Collecting dill<0.3.9,>=0.3.0 (from datasets)\n",
" Downloading dill-0.3.8-py3-none-any.whl.metadata (10 kB)\n",
"Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (2.2.2)\n",
"Collecting xxhash (from datasets)\n",
" Downloading xxhash-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB)\n",
"Collecting multiprocess<0.70.17 (from datasets)\n",
" Downloading multiprocess-0.70.16-py310-none-any.whl.metadata (7.2 kB)\n",
"Collecting fsspec<=2024.9.0,>=2023.1.0 (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets)\n",
" Downloading fsspec-2024.9.0-py3-none-any.whl.metadata (11 kB)\n",
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.10.10)\n",
"Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (2.4.3)\n",
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n",
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (24.2.0)\n",
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.5.0)\n",
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.1.0)\n",
"Requirement already satisfied: yarl<2.0,>=1.12.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.17.0)\n",
"Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n",
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.23.2->transformers) (4.12.2)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.4.0)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.10)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2.2.3)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2024.8.30)\n",
"Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n",
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2024.2)\n",
"Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2024.2)\n",
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->datasets) (1.16.0)\n",
"Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from yarl<2.0,>=1.12.0->aiohttp->datasets) (0.2.0)\n",
"Downloading datasets-3.1.0-py3-none-any.whl (480 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m480.6/480.6 kB\u001b[0m \u001b[31m9.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading dill-0.3.8-py3-none-any.whl (116 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m8.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading fsspec-2024.9.0-py3-none-any.whl (179 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m179.3/179.3 kB\u001b[0m \u001b[31m7.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m4.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading xxhash-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m11.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hInstalling collected packages: xxhash, fsspec, dill, multiprocess, datasets\n",
" Attempting uninstall: fsspec\n",
" Found existing installation: fsspec 2024.10.0\n",
" Uninstalling fsspec-2024.10.0:\n",
" Successfully uninstalled fsspec-2024.10.0\n",
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"gcsfs 2024.10.0 requires fsspec==2024.10.0, but you have fsspec 2024.9.0 which is incompatible.\u001b[0m\u001b[31m\n",
"\u001b[0mSuccessfully installed datasets-3.1.0 dill-0.3.8 fsspec-2024.9.0 multiprocess-0.70.16 xxhash-3.5.0\n"
]
}
],
"source": [
"# Transformers installation\n",
"! pip install transformers datasets\n",
"# To install from source instead of the last release, comment the command above and uncomment the following one.\n",
"# ! pip install git+https://github.com/huggingface/transformers.git"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8GIHY6dx_ST5"
},
"source": [
"# Causal language modeling"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Kkn9GFBO_ST6"
},
"source": [
"There are two types of language modeling, causal and masked. This guide illustrates causal language modeling.\n",
"Causal language models are frequently used for text generation. You can use these models for creative applications like\n",
"choosing your own text adventure or an intelligent coding assistant like Copilot or CodeParrot."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"hide_input": true,
"id": "caiPPXU2_ST6",
"outputId": "54f7e440-06bf-4d63-d130-41d9305d522c"
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#@title\n",
"from IPython.display import HTML\n",
"\n",
"HTML('')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "r6Nr-TH3_ST7"
},
"source": [
"Causal language modeling predicts the next token in a sequence of tokens, and the model can only attend to tokens on\n",
"the left. This means the model cannot see future tokens. GPT-2 is an example of a causal language model.\n",
"\n",
"This guide will show you how to:\n",
"\n",
"1. Finetune [DistilGPT2](https://huggingface.co./distilgpt2) on the [r/askscience](https://www.reddit.com/r/askscience/) subset of the [ELI5](https://huggingface.co./datasets/eli5) dataset.\n",
"2. Use your finetuned model for inference.\n",
"\n",
"\n",
"You can finetune other architectures for causal language modeling following the same steps in this guide.\n",
"Choose one of the following architectures:\n",
"\n",
"\n",
"[BART](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/bart), [BERT](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/bert), [Bert Generation](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/bert-generation), [BigBird](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/big_bird), [BigBird-Pegasus](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/bigbird_pegasus), [BioGpt](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/biogpt), [Blenderbot](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/blenderbot), [BlenderbotSmall](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/blenderbot-small), [BLOOM](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/bloom), [CamemBERT](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/camembert), [CodeGen](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/codegen), [CPM-Ant](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/cpmant), [CTRL](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/ctrl), [Data2VecText](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/data2vec-text), [ELECTRA](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/electra), [ERNIE](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/ernie), [GIT](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/git), [GPT-Sw3](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/gpt-sw3), [OpenAI GPT-2](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/gpt2), [GPTBigCode](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/gpt_bigcode), [GPT Neo](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/gpt_neo), [GPT NeoX](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/gpt_neox), [GPT NeoX Japanese](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/gpt_neox_japanese), [GPT-J](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/gptj), [LLaMA](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/llama), [Marian](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/marian), [mBART](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/mbart), [MEGA](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/mega), [Megatron-BERT](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/megatron-bert), [MVP](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/mvp), [OpenLlama](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/open-llama), [OpenAI GPT](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/openai-gpt), [OPT](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/opt), [Pegasus](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/pegasus), [PLBart](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/plbart), [ProphetNet](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/prophetnet), [QDQBert](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/qdqbert), [Reformer](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/reformer), [RemBERT](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/rembert), [RoBERTa](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/roberta), [RoBERTa-PreLayerNorm](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/roberta-prelayernorm), [RoCBert](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/roc_bert), [RoFormer](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/roformer), [RWKV](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/rwkv), [Speech2Text2](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/speech_to_text_2), [Transformer-XL](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/transfo-xl), [TrOCR](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/trocr), [XGLM](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/xglm), [XLM](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/xlm), [XLM-ProphetNet](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/xlm-prophetnet), [XLM-RoBERTa](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/xlm-roberta), [XLM-RoBERTa-XL](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/xlm-roberta-xl), [XLNet](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/xlnet), [X-MOD](https://huggingface.co./docs/transformers/main/en/tasks/../model_doc/xmod)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"Before you begin, make sure you have all the necessary libraries installed:\n",
"\n",
"```bash\n",
"pip install transformers datasets evaluate\n",
"```\n",
"\n",
"We encourage you to log in to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to log in:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "HNEFNepD_ST7",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 145,
"referenced_widgets": [
"c7cbac92b50c4b25b08ed53fb9d1e7ea",
"27462e9f8f584bd78302afbb558e7ce1",
"c4ddf3e11f494ce192e43ab0af76c1fb",
"dfc862db896046059198b5361979b4d0",
"897f46281fc04d059196c2a3f74e2602",
"8d0af4b805e443be87b93c65c4054481",
"3ef31c1b6fd149ada314af97d178fda7",
"685da064d0da4425bfe1caa922a73255",
"f069dd7f87f648bead5ca105108692a7",
"734ec20652934fb7973ea279e1cdcbd1",
"00e7f46767104689856ab69ee26e93ea",
"a6c08d8b8f464351a9015d1c92b2fe49",
"9c447393363e4f489c6b164853d52dba",
"219d008e9c184d37b5d44b4534cb740f",
"62a3cfa603bf4409958fd33a67421eea",
"20abd2c02bd34e2f81618c677bc69d7e",
"c64794312be24a3bb508fc6a012872e7",
"8708b3d8a0c44e65ba7150e56ba3f7b0",
"d1b201fad44a4df4af2578cb3c7d2963",
"99904d572ffe47e6a71560fc56fc331c",
"a6d2343e8b7145e48530efe26b4d467e",
"033330b6ae814b5ea1d816c778f7f72e",
"94e78d176d82449aac3722ae909b2fd6",
"1db9f91e5ce14354baf2fa76681daa87",
"59fe98107d04476bbd98c5e1c528f101",
"4291244fdfde4c518cef77c6ed17edfb",
"2a33f4d4a0cc407dbdc3781ffacbae3c",
"2538e209aa9749ea9d3aeb250e05aebf",
"419dcbefbd914099943cca505a3e1a07",
"75a7ccf7b458432aaff71a0a0ab28ef3",
"5d4c80291ded4492b87701256a245af7",
"fcf964c0a87641cfbca1fde6847beb9e"
]
},
"outputId": "869a3c5e-b980-4c0c-851a-0b4e2ee8a10d"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"VBox(children=(HTML(value='
"
],
"text/plain": [
""
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#@title\n",
"from IPython.display import HTML\n",
"\n",
"HTML('')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "UN9pd11c_ST-"
},
"source": [
"The next step is to load a DistilGPT2 tokenizer to process the `text` subfield:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "O0BDNuZq_ST-"
},
"outputs": [],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"distilgpt2\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "tQNaKpNt_ST-"
},
"source": [
"You'll notice from the example above, the `text` field is actually nested inside `answers`. This means you'll need to\n",
"extract the `text` subfield from its nested structure with the [`flatten`](https://huggingface.co./docs/datasets/process.html#flatten) method:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "KdRXyn6i_ST_"
},
"outputs": [],
"source": [
"eli5 = eli5.flatten()\n",
"eli5[\"train\"][0]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9aBjaqlM_ST_"
},
"source": [
"Each subfield is now a separate column as indicated by the `answers` prefix, and the `text` field is a list now. Instead\n",
"of tokenizing each sentence separately, convert the list to a string so you can jointly tokenize them.\n",
"\n",
"Here is a first preprocessing function to join the list of strings for each example and tokenize the result:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "e37Cp9Lq_ST_"
},
"outputs": [],
"source": [
"def preprocess_function(examples):\n",
" return tokenizer([\" \".join(x) for x in examples[\"answers.text\"]])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gLic8Ek9_ST_"
},
"source": [
"To apply this preprocessing function over the entire dataset, use the 🤗 Datasets [map](https://huggingface.co./docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.map) method. You can speed up the `map` function by setting `batched=True` to process multiple elements of the dataset at once, and increasing the number of processes with `num_proc`. Remove any columns you don't need:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "tK0s7hcf_ST_"
},
"outputs": [],
"source": [
"tokenized_eli5 = eli5.map(\n",
" preprocess_function,\n",
" batched=True,\n",
" num_proc=4,\n",
" remove_columns=eli5[\"train\"].column_names,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7RzsXBTC_ST_"
},
"source": [
"This dataset contains the token sequences, but some of these are longer than the maximum input length for the model.\n",
"\n",
"You can now use a second preprocessing function to\n",
"- concatenate all the sequences\n",
"- split the concatenated sequences into shorter chunks defined by `block_size`, which should be both shorter than the maximum input length and short enough for your GPU RAM."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "7AzXGvbw_SUA"
},
"outputs": [],
"source": [
"block_size = 128\n",
"\n",
"\n",
"def group_texts(examples):\n",
" # Concatenate all texts.\n",
" concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}\n",
" total_length = len(concatenated_examples[list(examples.keys())[0]])\n",
" # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can\n",
" # customize this part to your needs.\n",
" if total_length >= block_size:\n",
" total_length = (total_length // block_size) * block_size\n",
" # Split by chunks of block_size.\n",
" result = {\n",
" k: [t[i : i + block_size] for i in range(0, total_length, block_size)]\n",
" for k, t in concatenated_examples.items()\n",
" }\n",
" result[\"labels\"] = result[\"input_ids\"].copy()\n",
" return result"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "sOyQRzsv_SUA"
},
"source": [
"Apply the `group_texts` function over the entire dataset:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Z7t6EE7P_SUA"
},
"outputs": [],
"source": [
"lm_dataset = tokenized_eli5.map(group_texts, batched=True, num_proc=4)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ugfVrCmC_SUA"
},
"source": [
"Now create a batch of examples using [DataCollatorForLanguageModeling](https://huggingface.co./docs/transformers/main/en/main_classes/data_collator#transformers.DataCollatorForLanguageModeling). It's more efficient to *dynamically pad* the\n",
"sentences to the longest length in a batch during collation, instead of padding the whole dataset to the maximum length.\n",
"\n",
"Use the end-of-sequence token as the padding token and set `mlm=False`. This will use the inputs as labels shifted to the right by one element:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "rmHliRoe_SUA"
},
"outputs": [],
"source": [
"from transformers import DataCollatorForLanguageModeling\n",
"\n",
"tokenizer.pad_token = tokenizer.eos_token\n",
"data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "iIWXgoTI_SUA"
},
"source": [
"## Train"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "P-Xnbyai_SUA"
},
"source": [
"\n",
"\n",
"If you aren't familiar with finetuning a model with the [Trainer](https://huggingface.co./docs/transformers/main/en/main_classes/trainer#transformers.Trainer), take a look at the [basic tutorial](https://huggingface.co./docs/transformers/main/en/tasks/../training#train-with-pytorch-trainer)!\n",
"\n",
"\n",
"\n",
"You're ready to start training your model now! Load DistilGPT2 with [AutoModelForCausalLM](https://huggingface.co./docs/transformers/main/en/model_doc/auto#transformers.AutoModelForCausalLM):"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "RZzJ4kdU_SUB"
},
"outputs": [],
"source": [
"from transformers import AutoModelForCausalLM, TrainingArguments, Trainer\n",
"\n",
"model = AutoModelForCausalLM.from_pretrained(\"distilgpt2\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QEG5vHkA_SUB"
},
"source": [
"At this point, only three steps remain:\n",
"\n",
"1. Define your training hyperparameters in [TrainingArguments](https://huggingface.co./docs/transformers/main/en/main_classes/trainer#transformers.TrainingArguments). The only required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model).\n",
"2. Pass the training arguments to [Trainer](https://huggingface.co./docs/transformers/main/en/main_classes/trainer#transformers.Trainer) along with the model, datasets, and data collator.\n",
"3. Call [train()](https://huggingface.co./docs/transformers/main/en/main_classes/trainer#transformers.Trainer.train) to finetune your model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "QFxucb5l_SUB"
},
"outputs": [],
"source": [
"training_args = TrainingArguments(\n",
" output_dir=\"my_awesome_eli5_clm-model\",\n",
" evaluation_strategy=\"epoch\",\n",
" learning_rate=2e-5,\n",
" weight_decay=0.01,\n",
" push_to_hub=True,\n",
")\n",
"\n",
"trainer = Trainer(\n",
" model=model,\n",
" args=training_args,\n",
" train_dataset=lm_dataset[\"train\"],\n",
" eval_dataset=lm_dataset[\"test\"],\n",
" data_collator=data_collator,\n",
")\n",
"\n",
"trainer.train()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QPwqvjJt_SUB"
},
"source": [
"Once training is completed, use the [evaluate()](https://huggingface.co./docs/transformers/main/en/main_classes/trainer#transformers.Trainer.evaluate) method to evaluate your model and get its perplexity:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "v4l5uJvZ_SUB"
},
"outputs": [],
"source": [
"import math\n",
"\n",
"eval_results = trainer.evaluate()\n",
"print(f\"Perplexity: {math.exp(eval_results['eval_loss']):.2f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4YPTUv2X_SUC"
},
"source": [
"Then share your model to the Hub with the [push_to_hub()](https://huggingface.co./docs/transformers/main/en/main_classes/trainer#transformers.Trainer.push_to_hub) method so everyone can use your model:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "M9gA4ae0_SUC"
},
"outputs": [],
"source": [
"trainer.push_to_hub()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wko6NzBL_SUG"
},
"source": [
"\n",
"\n",
"For a more in-depth example of how to finetune a model for causal language modeling, take a look at the corresponding\n",
"[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)\n",
"or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "lW95xHiy_SUG"
},
"source": [
"## Inference"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MZiF18Tp_SUG"
},
"source": [
"Great, now that you've finetuned a model, you can use it for inference!\n",
"\n",
"Come up with a prompt you'd like to generate text from:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "BMIbrIW__SUG"
},
"outputs": [],
"source": [
"prompt = \"Somatic hypermutation allows the immune system to\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "SaHfWSK8_SUG"
},
"source": [
"The simplest way to try out your finetuned model for inference is to use it in a [pipeline()](https://huggingface.co./docs/transformers/main/en/main_classes/pipelines#transformers.pipeline). Instantiate a `pipeline` for text generation with your model, and pass your text to it:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "vh3c1LZE_SUG"
},
"outputs": [],
"source": [
"from transformers import pipeline\n",
"\n",
"generator = pipeline(\"text-generation\", model=\"my_awesome_eli5_clm-model\")\n",
"generator(prompt)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9cTZrrHU_SUH"
},
"source": [
"Tokenize the text and return the `input_ids` as PyTorch tensors:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "xKjYKsVE_SUH"
},
"outputs": [],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"my_awesome_eli5_clm-model\")\n",
"inputs = tokenizer(prompt, return_tensors=\"pt\").input_ids"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "sjz8NpIv_SUH"
},
"source": [
"Use the [generate()](https://huggingface.co./docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.generate) method to generate text.\n",
"For more details about the different text generation strategies and parameters for controlling generation, check out the [Text generation strategies](https://huggingface.co./docs/transformers/main/en/tasks/../generation_strategies) page."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "G-KrHWZ1_SUH"
},
"outputs": [],
"source": [
"from transformers import AutoModelForCausalLM\n",
"\n",
"model = AutoModelForCausalLM.from_pretrained(\"my_awesome_eli5_clm-model\")\n",
"outputs = model.generate(inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_ubarw6t_SUH"
},
"source": [
"Decode the generated token ids back into text:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "6IKhmEr7_SUH"
},
"outputs": [],
"source": [
"tokenizer.batch_decode(outputs, skip_special_tokens=True)"
]
}
],
"metadata": {
"colab": {
"provenance": [],
"toc_visible": true
},
"language_info": {
"name": "python"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"c7cbac92b50c4b25b08ed53fb9d1e7ea": {
"model_module": "@jupyter-widgets/controls",
"model_name": "VBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "VBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "VBoxView",
"box_style": "",
"children": [
"IPY_MODEL_a6d2343e8b7145e48530efe26b4d467e",
"IPY_MODEL_033330b6ae814b5ea1d816c778f7f72e",
"IPY_MODEL_94e78d176d82449aac3722ae909b2fd6",
"IPY_MODEL_1db9f91e5ce14354baf2fa76681daa87"
],
"layout": "IPY_MODEL_3ef31c1b6fd149ada314af97d178fda7"
}
},
"27462e9f8f584bd78302afbb558e7ce1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_685da064d0da4425bfe1caa922a73255",
"placeholder": "",
"style": "IPY_MODEL_f069dd7f87f648bead5ca105108692a7",
"value": "
Copy a token from your Hugging Face\ntokens page and paste it below. Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file.