Pose3D / render.py
wufeim's picture
update
208d6bf
raw
history blame
5.87 kB
import argparse
import BboxTools as bbt
import gradio as gr
import numpy as np
from PIL import Image
from pytorch3d.renderer import RasterizationSettings, PerspectiveCameras, MeshRasterizer, MeshRenderer, HardPhongShader, BlendParams, camera_position_from_spherical_angles, look_at_rotation, PointLights
from pytorch3d.renderer import TexturesVertex as Textures
from pytorch3d.structures import Meshes
import torch
mesh_paths = {
"Aeroplane": "CAD_selected/aeroplane.off",
"Bicycle": "CAD_selected/bicycle.off",
"Boat": "CAD_selected/boat.off",
"Bottle": "CAD_selected/bottle.off",
"Bus": "CAD_selected/bus.off",
"Car": "CAD_selected/car.off",
"Chair": "CAD_selected/chair.off",
"Diningtable": "CAD_selected/diningtable.off",
"Motorbike": "CAD_selected/motorbike.off",
"Sofa": "CAD_selected/sofa.off",
"Train": "CAD_selected/train.off",
"Tvmonitor": "CAD_selected/tvmonitor.off",
}
def parse_args():
parser = argparse.ArgumentParser(description='Render off')
parser.add_argument('--azimuth', type=float)
parser.add_argument('--elevation', type=float)
parser.add_argument('--theta', type=float)
parser.add_argument('--dist', type=float)
parser.add_argument('--category', type=str)
parser.add_argument('--unit', type=str)
parser.add_argument('--img_id', type=int)
return parser.parse_args()
def rotation_theta(theta, device_=None):
# cos -sin 0
# sin cos 0
# 0 0 1
if type(theta) == float:
if device_ is None:
device_ = 'cpu'
theta = torch.ones((1, 1, 1)).to(device_) * theta
else:
if device_ is None:
device_ = theta.device
theta = theta.view(-1, 1, 1)
mul_ = torch.Tensor([[1, 0, 0, 0, 1, 0, 0, 0, 0], [0, -1, 0, 1, 0, 0, 0, 0, 0]]).view(1, 2, 9).to(device_)
bia_ = torch.Tensor([0] * 8 + [1]).view(1, 1, 9).to(device_)
# [n, 1, 2]
cos_sin = torch.cat((torch.cos(theta), torch.sin(theta)), dim=2).to(device_)
# [n, 1, 2] @ [1, 2, 9] + [1, 1, 9] => [n, 1, 9] => [n, 3, 3]
trans = torch.matmul(cos_sin, mul_) + bia_
trans = trans.view(-1, 3, 3)
return trans
def campos_to_R_T(campos, theta, device='cpu', at=((0, 0, 0),), up=((0, 1, 0), )):
R = look_at_rotation(campos, at=at, device=device, up=up) # (n, 3, 3)
R = torch.bmm(R, rotation_theta(theta, device_=device))
T = -torch.bmm(R.transpose(1, 2), campos.unsqueeze(2))[:, :, 0] # (1, 3)
return R, T
def load_off(off_file_name, to_torch=False):
file_handle = open(off_file_name)
file_list = file_handle.readlines()
n_points = int(file_list[1].split(' ')[0])
all_strings = ''.join(file_list[2:2 + n_points])
array_ = np.fromstring(all_strings, dtype=np.float32, sep='\n')
all_strings = ''.join(file_list[2 + n_points:])
array_int = np.fromstring(all_strings, dtype=np.int32, sep='\n')
array_ = array_.reshape((-1, 3))
if not to_torch:
return array_, array_int.reshape((-1, 4))[:, 1::]
else:
return torch.from_numpy(array_), torch.from_numpy(array_int.reshape((-1, 4))[:, 1::])
def pre_process_mesh_pascal(verts):
verts = torch.cat((verts[:, 0:1], verts[:, 2:3], -verts[:, 1:2]), dim=1)
return verts
def render(azimuth, elevation, theta, dist, category, unit, img_id):
azimuth = float(azimuth)
elevation = float(elevation)
theta = float(theta)
dist = float(dist)
h, w = 256, 256
render_image_size = max(h, w)
crop_size = (256, 256)
device = 'cpu'
cameras = PerspectiveCameras(focal_length=12.0, device=device)
raster_settings = RasterizationSettings(
image_size=render_image_size,
blur_radius=0.0,
faces_per_pixel=1,
bin_size=0
)
raster_settings1 = RasterizationSettings(
image_size=render_image_size // 8,
blur_radius=0.0,
faces_per_pixel=1,
bin_size=0
)
rasterizer = MeshRasterizer(
cameras=cameras,
raster_settings=raster_settings1
)
lights = PointLights(device=device, location=((2.0, 2.0, -2.0),))
phong_renderer = MeshRenderer(
rasterizer=MeshRasterizer(
cameras=cameras,
raster_settings=raster_settings
),
shader=HardPhongShader(device=device, lights=lights, cameras=cameras)
)
x3d, xface = load_off(mesh_paths[category])
x3d = x3d * 1.0
verts = torch.from_numpy(x3d).to(device)
verts = pre_process_mesh_pascal(verts)
faces = torch.from_numpy(xface).to(device)
verts_rgb = torch.ones_like(verts)[None]
# verts_rgb = torch.ones_like(verts)[None] * torch.Tensor(color).view(1, 1, 3).to(verts.device)
textures = Textures(verts_rgb.to(device))
meshes = Meshes(verts=[verts], faces=[faces], textures=textures)
# meshes = Meshes(verts=[verts], faces=[faces])
C = camera_position_from_spherical_angles(dist, elevation, azimuth, degrees=(unit=='Degree'), device=device)
R, T = campos_to_R_T(C, theta, device=device)
image = phong_renderer(meshes_world=meshes.clone(), R=R, T=T)
image = image[:, ..., :3]
box_ = bbt.box_by_shape(crop_size, (render_image_size // 2,) * 2)
bbox = box_.bbox
image = image[:, bbox[0][0]:bbox[0][1], bbox[1][0]:bbox[1][1], :]
image = torch.squeeze(image).detach().cpu().numpy()
image = np.array((image / image.max()) * 255).astype(np.uint8)
cx, cy = (128, 128)
dx = int(-cx + w/2)
dy = int(-cy + h/2)
image_pad = np.pad(image, ((abs(dy), abs(dy)), (abs(dx), abs(dx)), (0, 0)), mode='edge')
image = image_pad[dy+abs(dy):dy+abs(dy)+image.shape[0], dx+abs(dx):dx+abs(dx)+image.shape[1]]
Image.fromarray(image).save(f'{img_id:05d}.png')
if __name__ == '__main__':
args = parse_args()
render(args.azimuth, args.elevation, args.theta, args.dist, args.category, args.unit, args.img_id)