File size: 6,238 Bytes
deb99f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import BboxTools as bbt
import gradio as gr
import numpy as np
from pytorch3d.renderer import RasterizationSettings, PerspectiveCameras, MeshRasterizer, MeshRenderer, HardPhongShader, BlendParams, camera_position_from_spherical_angles, look_at_rotation, PointLights
from pytorch3d.renderer import TexturesVertex as Textures
from pytorch3d.structures import Meshes
import torch

mesh_paths = {
    "Aeroplane": "CAD_selected/aeroplane.off",
    "Bicycle": "CAD_selected/bicycle.off",
    "Boat": "CAD_selected/boat.off",
    "Bottle": "CAD_selected/bottle.off",
    "Bus": "CAD_selected/bus.off",
    "Car": "CAD_selected/car.off",
    "Chair": "CAD_selected/chair.off",
    "Diningtable": "CAD_selected/diningtable.off",
    "Motorbike": "CAD_selected/motorbike.off",
    "Sofa": "CAD_selected/sofa.off",
    "Train": "CAD_selected/train.off",
    "Tvmonitor": "CAD_selected/tvmonitor.off",
}


def rotation_theta(theta, device_=None):
    # cos -sin  0
    # sin  cos  0
    # 0    0    1
    if type(theta) == float:
        if device_ is None:
            device_ = 'cpu'
        theta = torch.ones((1, 1, 1)).to(device_) * theta
    else:
        if device_ is None:
            device_ = theta.device
        theta = theta.view(-1, 1, 1)

    mul_ = torch.Tensor([[1, 0, 0, 0, 1, 0, 0, 0, 0], [0, -1, 0, 1, 0, 0, 0, 0, 0]]).view(1, 2, 9).to(device_)
    bia_ = torch.Tensor([0] * 8 + [1]).view(1, 1, 9).to(device_)

    # [n, 1, 2]
    cos_sin = torch.cat((torch.cos(theta), torch.sin(theta)), dim=2).to(device_)

    # [n, 1, 2] @ [1, 2, 9] + [1, 1, 9] => [n, 1, 9] => [n, 3, 3]
    trans = torch.matmul(cos_sin, mul_) + bia_
    trans = trans.view(-1, 3, 3)

    return trans


def campos_to_R_T(campos, theta, device='cpu', at=((0, 0, 0),), up=((0, 1, 0), )):
    R = look_at_rotation(campos, at=at, device=device, up=up)  # (n, 3, 3)
    R = torch.bmm(R, rotation_theta(theta, device_=device))
    T = -torch.bmm(R.transpose(1, 2), campos.unsqueeze(2))[:, :, 0]  # (1, 3)
    return R, T


def load_off(off_file_name, to_torch=False):
    file_handle = open(off_file_name)

    file_list = file_handle.readlines()
    n_points = int(file_list[1].split(' ')[0])
    all_strings = ''.join(file_list[2:2 + n_points])
    array_ = np.fromstring(all_strings, dtype=np.float32, sep='\n')

    all_strings = ''.join(file_list[2 + n_points:])
    array_int = np.fromstring(all_strings, dtype=np.int32, sep='\n')

    array_ = array_.reshape((-1, 3))

    if not to_torch:
        return array_, array_int.reshape((-1, 4))[:, 1::]
    else:
        return torch.from_numpy(array_), torch.from_numpy(array_int.reshape((-1, 4))[:, 1::])


def pre_process_mesh_pascal(verts):
    verts = torch.cat((verts[:, 0:1], verts[:, 2:3], -verts[:, 1:2]), dim=1)
    return verts


def render(azimuth, elevation, theta, dist, category, unit):
    azimuth = float(azimuth)
    elevation = float(elevation)
    theta = float(theta)
    dist = float(dist)

    h, w = 256, 256
    render_image_size = max(h, w)
    crop_size = (256, 256)
    device = 'cpu'

    cameras = PerspectiveCameras(focal_length=12.0, device=device)
    raster_settings = RasterizationSettings(
        image_size=render_image_size,
        blur_radius=0.0,
        faces_per_pixel=1,
        bin_size=0
    )
    raster_settings1 = RasterizationSettings(
        image_size=render_image_size // 8,
        blur_radius=0.0,
        faces_per_pixel=1,
        bin_size=0
    )
    rasterizer = MeshRasterizer(
        cameras=cameras,
        raster_settings=raster_settings1
    )
    lights = PointLights(device=device, location=((2.0, 2.0, -2.0),))
    phong_renderer = MeshRenderer(
        rasterizer=MeshRasterizer(
            cameras=cameras,
            raster_settings=raster_settings
        ),
        shader=HardPhongShader(device=device, lights=lights, cameras=cameras)
    )

    x3d, xface = load_off(mesh_paths[category])
    x3d = x3d * 1.0
    verts = torch.from_numpy(x3d).to(device)
    verts = pre_process_mesh_pascal(verts)
    faces = torch.from_numpy(xface).to(device)
    verts_rgb = torch.ones_like(verts)[None]
    # verts_rgb = torch.ones_like(verts)[None] * torch.Tensor(color).view(1, 1, 3).to(verts.device)
    textures = Textures(verts_rgb.to(device))
    meshes = Meshes(verts=[verts], faces=[faces], textures=textures)
    # meshes = Meshes(verts=[verts], faces=[faces])

    C = camera_position_from_spherical_angles(dist, elevation, azimuth, degrees=(unit=='Degree'), device=device)
    R, T = campos_to_R_T(C, theta, device=device)
    image = phong_renderer(meshes_world=meshes.clone(), R=R, T=T)
    image = image[:, ..., :3]
    box_ = bbt.box_by_shape(crop_size, (render_image_size // 2,) * 2)
    bbox = box_.bbox
    image = image[:, bbox[0][0]:bbox[0][1], bbox[1][0]:bbox[1][1], :]
    image = torch.squeeze(image).detach().cpu().numpy()
    image = np.array((image / image.max()) * 255).astype(np.uint8)

    cx, cy = (128, 128)
    dx = int(-cx + w/2)
    dy = int(-cy + h/2)
    image_pad = np.pad(image, ((abs(dy), abs(dy)), (abs(dx), abs(dx)), (0, 0)), mode='edge')
    image = image_pad[dy+abs(dy):dy+abs(dy)+image.shape[0], dx+abs(dx):dx+abs(dx)+image.shape[1]]

    return image


with gr.Blocks() as demo:
    gr.Markdown('# Visualize object pose')
    gr.Markdown('This app runs on a free HuggingFace Space with no GPU support. Rendering an image generally takes a few seconds.')
    with gr.Row():
        with gr.Column(scale=1):
            azimuth_box = gr.Textbox(label="Azimuth", value="45")
            elevation_box = gr.Textbox(label="Elevation", value="15")
            theta_box = gr.Textbox(label="Theta", value="0")
            dist_box = gr.Textbox(label="Distance", value="4")
            category_radio = gr.Radio(["Aeroplane", "Bicycle", "Boat", "Bottle", "Bus", "Car", "Chair", "Diningtable", "Motorbike", "Sofa", "Train", "Tvmonitor"], value="Aeroplane")
            unit_radio = gr.Radio(["Degree", "Radian"], value="Degree")
            render_btn = gr.Button("Render")
        with gr.Column(scale=1):
            output = gr.Image(shape=(256, 256))
        render_btn.click(fn=render, inputs=[azimuth_box, elevation_box, theta_box, dist_box, category_radio, unit_radio], outputs=output)

demo.launch()