File size: 1,941 Bytes
18e4b60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

from unimernet.datasets.builders.base_dataset_builder import load_dataset_config
from unimernet.common.registry import registry
from unimernet.datasets.builders.formula import FormulaRecTrainBuilder, FormulaRecEvalBuilder, \
    MultiScaleFormulaRecTrainBuilder

__all__ = [
    "FormulaRecTrainBuilder",
    "FormulaRecEvalBuilder",
    "MultiScaleFormulaRecTrainBuilder",
]


def load_dataset(name, cfg_path=None, vis_path=None, data_type=None):
    """
    Example

    >>> dataset = load_dataset("coco_caption", cfg=None)
    >>> splits = dataset.keys()
    >>> print([len(dataset[split]) for split in splits])

    """
    if cfg_path is None:
        cfg = None
    else:
        cfg = load_dataset_config(cfg_path)

    try:
        builder = registry.get_builder_class(name)(cfg)
    except TypeError:
        print(
            f"Dataset {name} not found. Available datasets:\n"
            + ", ".join([str(k) for k in dataset_zoo.get_names()])
        )
        exit(1)

    if vis_path is not None:
        if data_type is None:
            # use default data type in the config
            data_type = builder.config.data_type

        assert (
                data_type in builder.config.build_info
        ), f"Invalid data_type {data_type} for {name}."

        builder.config.build_info.get(data_type).storage = vis_path

    dataset = builder.build_datasets()
    return dataset


class DatasetZoo:
    def __init__(self) -> None:
        self.dataset_zoo = {
            k: list(v.DATASET_CONFIG_DICT.keys())
            for k, v in sorted(registry.mapping["builder_name_mapping"].items())
        }

    def get_names(self):
        return list(self.dataset_zoo.keys())


dataset_zoo = DatasetZoo()