Spaces:
Running
Running
import gradio as gr | |
import cv2 | |
import numpy as np | |
import os | |
from PIL import Image | |
import spaces | |
import torch | |
css = """ | |
#img-display-container { | |
max-height: 100vh; | |
} | |
#img-display-input { | |
max-height: 80vh; | |
} | |
#img-display-output { | |
max-height: 80vh; | |
} | |
""" | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
title = "# Stereo Anything" | |
description = """Official demo for **Stereo Anything: Unifying Stereo Matching with Large-Scale Mixed Data**. | |
Please refer to our [paper](https://arxiv.org/abs/2411.14053), [github](https://github.com/XiandaGuo/OpenStereo/) for more details.""" | |
def predict_depth(model, image): | |
return model(image) | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
gr.Markdown("### Depth Prediction demo") | |
gr.Markdown("You can slide the output to compare the depth prediction with input image") | |
with gr.Row(): | |
left_image = gr.Image(label="Left Image", type='numpy', elem_id='img-display-input') | |
right_image = gr.Image(label="Right Image", type='numpy', elem_id='img-display-input') | |
depth_image = gr.Image(label="Depth Image", type='numpy', elem_id='img-display-input') | |
# raw_file = gr.File(label="16-bit raw depth (can be considered as disparity)") | |
submit = gr.Button("Submit") | |
def on_submit(left_image,right_image): | |
sample = { | |
'left': left_image, | |
'right': right_image, | |
} | |
sample['left'] = sample['left'].unsqueeze(0) | |
sample['right'] = sample['right'].unsqueeze(0) | |
# model.eval() | |
for k, v in sample.items(): | |
sample[k] = v.to(0) if torch.is_tensor(v) else v | |
# model_pred = model(sample) | |
model_pred = None | |
return [model_pred] | |
submit.click(on_submit, inputs=[left_image,right_image], outputs=[depth_image]) | |
if __name__ == '__main__': | |
demo.queue().launch() |