import torch
from torchvision.utils import make_grid
import math
from PIL import Image
from diffusion import create_diffusion
from diffusers.models import AutoencoderKL
import gradio as gr
from imagenet_class_data import IMAGENET_1K_CLASSES
from download import find_model
from models import DiT_XL_2
def load_model(image_size=256):
assert image_size in [256, 512]
latent_size = image_size // 8
model = DiT_XL_2(input_size=latent_size).to(device)
state_dict = find_model(f"DiT-XL-2-{image_size}x{image_size}.pt")
model.load_state_dict(state_dict)
model.eval()
return model
torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"
find_model(f"DiT-XL-2-512x512.pt")
model = load_model(image_size=256)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device)
current_image_size = 256
current_vae_model = "stabilityai/sd-vae-ft-mse"
def generate(image_size, vae_model, class_label, cfg_scale, num_sampling_steps, seed):
n = 1
image_size = int(image_size.split("x")[0])
global current_image_size
if image_size != current_image_size:
global model
model = model.to("cpu")
del model
if device == "cuda":
torch.cuda.empty_cache()
model = load_model(image_size=image_size)
current_image_size = image_size
global current_vae_model
if vae_model != current_vae_model:
global vae
if device == "cuda":
vae.to("cpu")
del vae
vae = AutoencoderKL.from_pretrained(vae_model).to(device)
# Seed PyTorch:
torch.manual_seed(seed)
# Setup diffusion
diffusion = create_diffusion(str(num_sampling_steps))
# Create sampling noise:
latent_size = image_size // 8
z = torch.randn(n, 4, latent_size, latent_size, device=device)
y = torch.tensor([class_label] * n, device=device)
# Setup classifier-free guidance:
z = torch.cat([z, z], 0)
y_null = torch.tensor([1000] * n, device=device)
y = torch.cat([y, y_null], 0)
model_kwargs = dict(y=y, cfg_scale=cfg_scale)
# Sample images:
samples = diffusion.p_sample_loop(
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device
)
samples, _ = samples.chunk(2, dim=0) # Remove null class samples
samples = vae.decode(samples / 0.18215).sample
# Convert to PIL.Image format:
samples = samples.mul(127.5).add_(128.0).clamp_(0, 255).permute(0, 2, 3, 1).to("cpu", torch.uint8).numpy()
samples = [Image.fromarray(sample) for sample in samples]
return samples
description = '''This is a demo of our DiT image generation models. DiTs are a new class of diffusion models with
transformer backbones. They are class-conditional models trained on ImageNet-1K, and they outperform prior DDPMs.'''
duplicate = '''Skip the queue by duplicating this space and upgrading to GPU in settings
'''
project_links = '''
Project Page · Colab · Paper · GitHub
''' examples = [ ["512x512", "stabilityai/sd-vae-ft-mse", "golden retriever", 4.0, 200, 4, 1000], ["512x512", "stabilityai/sd-vae-ft-mse", "macaw", 4.0, 200, 4, 1], ["512x512", "stabilityai/sd-vae-ft-mse", "balloon", 4.0, 200, 4, 1], ["512x512", "stabilityai/sd-vae-ft-mse", "cliff, drop, drop-off", 4.0, 200, 4, 7], ["512x512", "stabilityai/sd-vae-ft-mse", "Pembroke, Pembroke Welsh corgi", 4.0, 200, 4, 0], ["256x256", "stabilityai/sd-vae-ft-mse", "sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita", 4.0, 200, 4, 1], ["256x256", "stabilityai/sd-vae-ft-mse", "teddy, teddy bear", 4.0, 200, 4, 3], ["256x256", "stabilityai/sd-vae-ft-mse", "cheeseburger", 4.0, 200, 4, 2], ] with gr.Blocks() as demo: gr.Markdown("