File size: 4,187 Bytes
2f0e211 e9619d2 2f0e211 e455307 e9619d2 2f0e211 70642bd 2f0e211 e455307 0611094 30a372e 0611094 30a372e c723717 0611094 30a372e 2f0e211 0611094 a08bac4 e9619d2 a08bac4 e9619d2 a08bac4 2f0e211 e9619d2 2f0e211 e9619d2 00e09c1 2f0e211 e9619d2 2f0e211 e9619d2 e455307 2f0e211 b91cab8 2f0e211 e9619d2 2f0e211 b505ef9 a08bac4 2f0e211 e9619d2 e455307 2f0e211 a08bac4 e455307 a08bac4 2f0e211 e455307 2f0e211 7eb7306 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import gradio as gr
import os
import time
import threading
from langchain.document_loaders import OnlinePDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
os.environ['OPENAI_API_KEY'] = os.getenv("Your_API_Key")
# Global variable for tracking last interaction time
last_interaction_time = 0
def loading_pdf():
return "Working on the upload. Also, pondering why humans don't use sporks more..."
def pdf_changes(pdf_doc):
try:
if pdf_doc is None:
return "No PDF uploaded."
loader = OnlinePDFLoader(pdf_doc.name)
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
global db
db = Chroma.from_documents(texts, embeddings)
retriever = db.as_retriever()
global qa
qa = ConversationalRetrievalChain.from_llm(
llm=OpenAI(temperature=0.2, model_name="gpt-4", max_tokens=-1, n=2),
retriever=retriever,
return_source_documents=False
)
return "Ready"
except Exception as e:
return f"Error loading PDF: {e}"
def clear_data():
global qa, db
qa = None
db = None
return "Data cleared"
def add_text(history, text):
global last_interaction_time
last_interaction_time = time.time()
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history[-1][0], history)
sentences = ' \n'.join(response.split('. '))
formatted_response = f"**Bot:**\n\n{sentences}"
history[-1][1] = formatted_response
return history
def infer(question, history):
res = []
for human, ai in history[:-1]:
pair = (human, ai)
res.append(pair)
chat_history = res
query = question
result = qa({"question": query, "chat_history": chat_history, "system:":"This is a world-class summarizing AI, be helpful."})
return result["answer"]
def auto_clear_data():
global qa, db, last_interaction_time
if time.time() - last_interaction_time > 1000:
qa = None
db = None
def periodic_clear():
while True:
auto_clear_data()
time.sleep(600)
threading.Thread(target=periodic_clear).start()
css = """
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<h1>CauseWriter Chat with PDF • OpenAI</h1>
<p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br />
when everything is ready, you can start asking questions about the pdf. <br />
This version is set to store chat history and uses OpenAI as LLM.</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
with gr.Column():
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
with gr.Row():
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
load_pdf = gr.Button("Convert PDF to Magic AI language")
clear_btn = gr.Button("Clear Data")
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=450)
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter")
submit_btn = gr.Button("Send Message")
load_pdf.click(loading_pdf, None, langchain_status, queue=False)
load_pdf.click(pdf_changes, inputs=[pdf_doc], outputs=[langchain_status], queue=False)
clear_btn.click(clear_data, outputs=[langchain_status], queue=False)
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot
)
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot
)
demo.launch() |