import gradio as gr import os import time import threading from langchain.document_loaders import OnlinePDFLoader from langchain.text_splitter import CharacterTextSplitter from langchain.llms import OpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain os.environ['OPENAI_API_KEY'] = os.getenv("Your_API_Key") # Global variable for tracking last interaction time last_interaction_time = 0 def loading_pdf(): return "Working on the upload. Also, pondering the usefulness of sporks..." def pdf_changes(pdf_doc): loader = OnlinePDFLoader(pdf_doc.name) documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100) texts = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() db = Chroma.from_documents(texts, embeddings) retriever = db.as_retriever() global qa qa = ConversationalRetrievalChain.from_llm( llm=OpenAI(temperature=0.2, model_name="gpt-3.5-turbo"), retriever=retriever, return_source_documents=False) return "Ready" def clear_data(): global qa qa = None return "Data cleared" def add_text(history, text): global last_interaction_time last_interaction_time = time.time() history = history + [(text, None)] return history, "" def bot(history): response = infer(history[-1][0], history) formatted_response = "**Bot:** \n" + ' \n'.join(response.split('. ')) history[-1][1] = formatted_response return history def infer(question, history): res = [] for human, ai in history[:-1]: pair = (human, ai) res.append(pair) chat_history = res query = question result = qa({"question": query, "chat_history": chat_history, "system:":"This is a world-class summarizing AI, be helpful."}) return result["answer"] def auto_clear_data(): global qa, last_interaction_time if time.time() - last_interaction_time > 600: qa = None def periodic_clear(): while True: auto_clear_data() time.sleep(60) threading.Thread(target=periodic_clear).start() css = """ #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} """ title = """

CauseWriter Chat with PDF • OpenAI

Upload a .PDF from your computer, click the "Load PDF to LangChain" button,
when everything is ready, you can start asking questions about the pdf.
This version is set to store chat history and uses OpenAI as LLM.

""" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML(title) with gr.Column(): pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file") with gr.Row(): langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False) load_pdf = gr.Button("Convert PDF to Magic AI language") clear_btn = gr.Button("Clear Data") chatbot = gr.Chatbot([], elem_id="chatbot").style(height=450) question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter") submit_btn = gr.Button("Send Message") load_pdf.click(loading_pdf, None, langchain_status, queue=False) load_pdf.click(pdf_changes, inputs=[pdf_doc], outputs=[langchain_status], queue=False) clear_btn.click(clear_data, outputs=[langchain_status], queue=False) question.submit(add_text, [chatbot, question], [chatbot, question]).then( bot, chatbot, chatbot ) submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then( bot, chatbot, chatbot ) demo.launch()