|
import gradio as gr |
|
import os |
|
import time |
|
import threading |
|
from langchain.document_loaders import OnlinePDFLoader |
|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain.llms import OpenAI |
|
from langchain.embeddings import OpenAIEmbeddings |
|
from langchain.vectorstores import Chroma |
|
from langchain.chains import ConversationalRetrievalChain |
|
|
|
|
|
os.environ['ANTHROPIC_API_KEY'] = os.getenv("Your_Anthropic_API_Key") |
|
os.environ['OPENAI_API_KEY'] = os.getenv("Your_API_Key") |
|
|
|
|
|
last_interaction_time = 0 |
|
|
|
|
|
from anthropic import LanguageModel |
|
|
|
anthropic_model = LanguageModel(api_key=os.environ['ANTHROPIC_API_KEY'], model="some_model") |
|
|
|
|
|
|
|
def loading_pdf(): |
|
return "Working on the upload. Also, pondering the usefulness of sporks..." |
|
|
|
def pdf_changes(pdf_doc): |
|
try: |
|
if pdf_doc is None: |
|
return "No PDF uploaded." |
|
|
|
loader = OnlinePDFLoader(pdf_doc.name) |
|
documents = loader.load() |
|
|
|
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100) |
|
texts = text_splitter.split_documents(documents) |
|
|
|
|
|
embeddings = OpenAIEmbeddings() |
|
|
|
global db |
|
db = Chroma.from_documents(texts, embeddings) |
|
retriever = db.as_retriever() |
|
|
|
global qa |
|
qa = ConversationalRetrievalChain.from_llm( |
|
llm=OpenAI(temperature=0.2, model_name="gpt-3.5-turbo"), |
|
retriever=retriever, |
|
return_source_documents=False |
|
) |
|
|
|
return "Ready" |
|
|
|
except Exception as e: |
|
return f"Error processing PDF: {e}" |
|
|
|
|
|
def clear_data(): |
|
global qa |
|
qa = None |
|
return "Data cleared" |
|
|
|
def add_text(history, text): |
|
global last_interaction_time |
|
last_interaction_time = time.time() |
|
history = history + [(text, None)] |
|
return history, "" |
|
|
|
def bot(history): |
|
response = infer_anthropic(history[-1][0], history) |
|
sentences = ' \n'.join(response.split('. ')) |
|
formatted_response = f"**Bot:**\n\n{sentences}" |
|
history[-1][1] = formatted_response |
|
return history |
|
|
|
def infer_anthropic(question, history): |
|
chat_history = [(human, ai) for human, ai in history[:-1]] |
|
query = question |
|
result = anthropic_model.query(query, context=chat_history) |
|
return result['answer'] |
|
|
|
def auto_clear_data(): |
|
global qa, last_interaction_time |
|
if time.time() - last_interaction_time > 600: |
|
qa = None |
|
|
|
def periodic_clear(): |
|
while True: |
|
auto_clear_data() |
|
time.sleep(60) |
|
|
|
threading.Thread(target=periodic_clear).start() |
|
|
|
css = """ |
|
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} |
|
""" |
|
|
|
title = """ |
|
<div style="text-align: center;max-width: 700px;"> |
|
<h1>CauseWriter Chat with PDF • OpenAI</h1> |
|
<p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br /> |
|
when everything is ready, you can start asking questions about the pdf. <br /> |
|
This version is set to store chat history and uses OpenAI as LLM.</p> |
|
</div> |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.HTML(title) |
|
|
|
with gr.Column(): |
|
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file") |
|
with gr.Row(): |
|
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False) |
|
load_pdf = gr.Button("Convert PDF to Magic AI language") |
|
clear_btn = gr.Button("Clear Data") |
|
|
|
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=450) |
|
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter") |
|
submit_btn = gr.Button("Send Message") |
|
|
|
load_pdf.click(loading_pdf, None, langchain_status, queue=False) |
|
load_pdf.click(pdf_changes, inputs=[pdf_doc], outputs=[langchain_status], queue=False) |
|
clear_btn.click(clear_data, outputs=[langchain_status], queue=False) |
|
question.submit(add_text, [chatbot, question], [chatbot, question]).then( |
|
bot, chatbot, chatbot |
|
) |
|
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then( |
|
bot, chatbot, chatbot |
|
) |
|
|
|
demo.launch() |