wholewhale's picture
gradio update
9b3cbf1
raw
history blame
6.44 kB
import gradio as gr
import os
import time
import threading
from langchain.document_loaders import OnlinePDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import WebBaseLoader
from langchain.chains.summarize import load_summarize_chain
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
os.environ['OPENAI_API_KEY'] = os.getenv("Your_API_Key")
# Global variable for tracking last interaction time
last_interaction_time = 0
def loading_pdf():
return "Working on the upload. Also, pondering the usefulness of sporks..."
# Inside Chroma mod
def summary(self):
num_documents = len(self.documents)
avg_doc_length = sum(len(doc) for doc in self.documents) / num_documents
return f"Number of documents: {num_documents}, Average document length: {avg_doc_length}"
# PDF summary and query using stuffing
def pdf_changes(pdf_doc):
try:
# Initialize loader and load documents
loader = OnlinePDFLoader(pdf_doc.name)
documents = loader.load()
# Define the prompt for summarization
prompt_template = """Write a concise summary of the following:
"{text}"
CONCISE SUMMARY:"""
prompt = PromptTemplate.from_template(prompt_template)
# Define the LLM chain with the specified prompt
llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo-16k")
llm_chain = LLMChain(llm=llm, prompt=prompt)
# Initialize StuffDocumentsChain
stuff_chain = StuffDocumentsChain(
llm_chain=llm_chain, document_variable_name="text"
)
# Generate summary using StuffDocumentsChain
global full_summary
full_summary = stuff_chain.run(documents)
# Other existing logic for Chroma, embeddings, and retrieval
embeddings = OpenAIEmbeddings()
global db
db = Chroma.from_documents(documents, embeddings)
retriever = db.as_retriever()
global qa
qa = ConversationalRetrievalChain.from_llm(
llm=OpenAI(temperature=0.2, model_name="gpt-3.5-turbo-16k", max_tokens=-1, n=2),
retriever=retriever,
return_source_documents=False
)
return f"Ready. Full Summary loaded."
except Exception as e:
return f"Error processing PDF: {str(e)}"
def clear_data():
global qa, db
qa = None
db = None
return "Data cleared"
def add_text(history, text):
global last_interaction_time
last_interaction_time = time.time()
history = history + [(text, None)]
return history, ""
def bot(history):
global full_summary
if 'summary' in history[-1][0].lower(): # Check if the last question asks for a summary
response = full_summary
return full_summary
else:
response = infer(history[-1][0], history)
sentences = ' \n'.join(response.split('. '))
formatted_response = f"**Bot:**\n\n{sentences}"
history[-1][1] = formatted_response
return history
def infer(question, history):
try:
res = []
for human, ai in history[:-1]:
pair = (human, ai)
res.append(pair)
chat_history = res
query = question
result = qa({"question": query, "chat_history": chat_history, "system": "This is a world-class summarizing AI, be helpful."})
return result["answer"]
except Exception as e:
return f"Error querying chatbot: {str(e)}"
def auto_clear_data():
global qa, da, last_interaction_time
if time.time() - last_interaction_time > 1000:
qa = None
db = None
def periodic_clear():
while True:
auto_clear_data()
time.sleep(1000)
threading.Thread(target=periodic_clear).start()
css = """
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<h1>CauseWriter Chat with PDF • OpenAI</h1>
<p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br />
when everything is ready, you can start asking questions about the pdf. Limit ~11k words. <br />
This version is set to erase chat history automatically after page timeout and uses OpenAI as LLM.</p>
</div>
"""
# Global variable for tracking last interaction time
last_interaction_time = 0
full_summary = "" # Added global full_summary
# ... (rest of your imports and function definitions)
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
with gr.Column():
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
with gr.Row():
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
load_pdf = gr.Button("Convert PDF to Magic AI language")
clear_btn = gr.Button("Clear Data")
# New Textbox to display summary
summary_box = gr.Textbox(label="Document Summary", placeholder="Summary will appear here.",
value=full_summary, interactive=False, rows=5)
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=450)
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter")
submit_btn = gr.Button("Send Message")
# Function to update summary box
def update_summary_box():
global full_summary
summary_box.value = full_summary
load_pdf.click(loading_pdf, None, langchain_status, queue=False)
load_pdf.click(pdf_changes, inputs=[pdf_doc], outputs=[langchain_status], queue=False).then(update_summary_box) # Then update the summary_box
clear_btn.click(clear_data, outputs=[langchain_status], queue=False)
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot
)
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot
)
demo.launch()