|
import gradio as gr |
|
import os |
|
import time |
|
import threading |
|
from langchain.document_loaders import OnlinePDFLoader |
|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain.llms import OpenAI |
|
from langchain.embeddings import OpenAIEmbeddings |
|
from langchain.vectorstores import Chroma |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.document_loaders import WebBaseLoader |
|
from langchain.chains.summarize import load_summarize_chain |
|
from langchain.chains.llm import LLMChain |
|
from langchain.prompts import PromptTemplate |
|
from langchain.chains.combine_documents.stuff import StuffDocumentsChain |
|
|
|
os.environ['OPENAI_API_KEY'] = os.getenv("Your_API_Key") |
|
|
|
|
|
last_interaction_time = 0 |
|
|
|
def loading_pdf(): |
|
return "Working on the upload. Also, pondering the usefulness of sporks..." |
|
|
|
|
|
def summary(self): |
|
num_documents = len(self.documents) |
|
avg_doc_length = sum(len(doc) for doc in self.documents) / num_documents |
|
return f"Number of documents: {num_documents}, Average document length: {avg_doc_length}" |
|
|
|
|
|
def pdf_changes(pdf_doc): |
|
try: |
|
|
|
loader = OnlinePDFLoader(pdf_doc.name) |
|
documents = loader.load() |
|
|
|
|
|
prompt_template = """Write a concise summary of the following: |
|
"{text}" |
|
CONCISE SUMMARY:""" |
|
prompt = PromptTemplate.from_template(prompt_template) |
|
|
|
|
|
llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo-16k") |
|
llm_chain = LLMChain(llm=llm, prompt=prompt) |
|
|
|
|
|
stuff_chain = StuffDocumentsChain( |
|
llm_chain=llm_chain, document_variable_name="text" |
|
) |
|
|
|
|
|
global full_summary |
|
full_summary = stuff_chain.run(documents) |
|
|
|
|
|
embeddings = OpenAIEmbeddings() |
|
global db |
|
db = Chroma.from_documents(documents, embeddings) |
|
|
|
retriever = db.as_retriever() |
|
global qa |
|
qa = ConversationalRetrievalChain.from_llm( |
|
llm=OpenAI(temperature=0.2, model_name="gpt-3.5-turbo-16k", max_tokens=-1, n=2), |
|
retriever=retriever, |
|
return_source_documents=False |
|
) |
|
|
|
return f"Ready. Full Summary loaded." |
|
|
|
except Exception as e: |
|
return f"Error processing PDF: {str(e)}" |
|
|
|
|
|
|
|
def clear_data(): |
|
global qa, db |
|
qa = None |
|
db = None |
|
return "Data cleared" |
|
|
|
def add_text(history, text): |
|
global last_interaction_time |
|
last_interaction_time = time.time() |
|
history = history + [(text, None)] |
|
return history, "" |
|
|
|
def bot(history): |
|
global full_summary |
|
if 'summary' in history[-1][0].lower(): |
|
response = full_summary |
|
return full_summary |
|
else: |
|
response = infer(history[-1][0], history) |
|
|
|
sentences = ' \n'.join(response.split('. ')) |
|
formatted_response = f"**Bot:**\n\n{sentences}" |
|
history[-1][1] = formatted_response |
|
return history |
|
|
|
|
|
def infer(question, history): |
|
try: |
|
res = [] |
|
for human, ai in history[:-1]: |
|
pair = (human, ai) |
|
res.append(pair) |
|
|
|
chat_history = res |
|
query = question |
|
result = qa({"question": query, "chat_history": chat_history, "system": "This is a world-class summarizing AI, be helpful."}) |
|
return result["answer"] |
|
except Exception as e: |
|
return f"Error querying chatbot: {str(e)}" |
|
|
|
def auto_clear_data(): |
|
global qa, da, last_interaction_time |
|
if time.time() - last_interaction_time > 1000: |
|
qa = None |
|
db = None |
|
|
|
def periodic_clear(): |
|
while True: |
|
auto_clear_data() |
|
time.sleep(1000) |
|
|
|
threading.Thread(target=periodic_clear).start() |
|
|
|
css = """ |
|
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} |
|
""" |
|
|
|
title = """ |
|
<div style="text-align: center;max-width: 700px;"> |
|
<h1>CauseWriter Chat with PDF • OpenAI</h1> |
|
<p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br /> |
|
when everything is ready, you can start asking questions about the pdf. Limit ~11k words. <br /> |
|
This version is set to erase chat history automatically after page timeout and uses OpenAI as LLM.</p> |
|
</div> |
|
""" |
|
|
|
last_interaction_time = 0 |
|
full_summary = "" |
|
|
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.HTML(title) |
|
|
|
with gr.Column(): |
|
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file") |
|
with gr.Row(): |
|
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False) |
|
load_pdf = gr.Button("Convert PDF to Magic AI language") |
|
clear_btn = gr.Button("Clear Data") |
|
|
|
|
|
summary_box = gr.Textbox(label="Document Summary", placeholder="Summary will appear here.", |
|
value=full_summary, interactive=False, rows=5) |
|
|
|
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=450) |
|
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter") |
|
submit_btn = gr.Button("Send Message") |
|
|
|
|
|
def update_summary_box(): |
|
global full_summary |
|
summary_box.value = full_summary |
|
|
|
load_pdf.click(loading_pdf, None, langchain_status, queue=False) |
|
load_pdf.click(pdf_changes, inputs=[pdf_doc], outputs=[langchain_status], queue=False).then(update_summary_box) |
|
clear_btn.click(clear_data, outputs=[langchain_status], queue=False) |
|
question.submit(add_text, [chatbot, question], [chatbot, question]).then( |
|
bot, chatbot, chatbot |
|
) |
|
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then( |
|
bot, chatbot, chatbot |
|
) |
|
|
|
demo.launch() |
|
|