wholewhale commited on
Commit
d2fbc5e
1 Parent(s): 6989cae

fixing not found problem

Browse files
Files changed (1) hide show
  1. app.py +67 -150
app.py CHANGED
@@ -1,188 +1,105 @@
1
  import urllib.request
2
- import fitz
3
  import re
4
  import numpy as np
5
  import tensorflow_hub as hub
6
- import openai
7
- import gradio as gr
8
- import os
9
  from sklearn.neighbors import NearestNeighbors
 
 
10
 
11
  def download_pdf(url, output_path):
12
- urllib.request.urlretrieve(url, output_path)
13
-
 
 
 
 
14
 
15
  def preprocess(text):
16
  text = text.replace('\n', ' ')
17
- text = re.sub('\s+', ' ', text)
18
  return text
19
 
20
-
21
  def pdf_to_text(path, start_page=1, end_page=None):
22
- doc = fitz.open(path)
23
- total_pages = doc.page_count
 
24
 
25
- if end_page is None:
26
- end_page = total_pages
27
 
28
- text_list = []
29
 
30
- for i in range(start_page-1, end_page):
31
- text = doc.load_page(i).get_text("text")
32
- text = preprocess(text)
33
- text_list.append(text)
34
-
35
- doc.close()
36
- return text_list
37
 
 
 
 
 
 
38
 
39
  def text_to_chunks(texts, word_length=150, start_page=1):
40
- text_toks = [t.split(' ') for t in texts]
41
- page_nums = []
42
  chunks = []
43
-
44
- for idx, words in enumerate(text_toks):
45
  for i in range(0, len(words), word_length):
46
- chunk = words[i:i+word_length]
47
- if (i+word_length) > len(words) and (len(chunk) < word_length) and (
48
- len(text_toks) != (idx+1)):
49
- text_toks[idx+1] = chunk + text_toks[idx+1]
50
- continue
51
  chunk = ' '.join(chunk).strip()
52
- chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
53
  chunks.append(chunk)
 
54
  return chunks
55
 
56
-
57
  class SemanticSearch:
58
-
59
  def __init__(self):
60
  self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
61
  self.fitted = False
62
-
63
-
64
- def fit(self, data, batch=1000, n_neighbors=5):
65
  self.data = data
66
- self.embeddings = self.get_text_embedding(data, batch=batch)
67
- n_neighbors = min(n_neighbors, len(self.embeddings))
68
- self.nn = NearestNeighbors(n_neighbors=n_neighbors)
69
  self.nn.fit(self.embeddings)
70
  self.fitted = True
71
-
72
-
73
- def __call__(self, text, return_data=True):
74
- inp_emb = self.use([text])
75
- neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
76
-
77
- if return_data:
78
- return [self.data[i] for i in neighbors]
79
- else:
80
- return neighbors
81
-
82
-
83
- def get_text_embedding(self, texts, batch=1000):
84
- embeddings = []
85
- for i in range(0, len(texts), batch):
86
- text_batch = texts[i:(i+batch)]
87
- emb_batch = self.use(text_batch)
88
- embeddings.append(emb_batch)
89
- embeddings = np.vstack(embeddings)
90
- return embeddings
91
-
92
-
93
-
94
- def load_recommender(path, start_page=1):
95
- global recommender
96
- texts = pdf_to_text(path, start_page=start_page)
97
- chunks = text_to_chunks(texts, start_page=start_page)
98
- recommender.fit(chunks)
99
- return 'Corpus Loaded.'
100
-
101
 
102
- def generate_text(prompt, engine="text-davinci-003"):
103
- openai.api_key = os.getenv('Your_Key_Here')
104
- completions = openai.Completion.create(
105
- engine=engine,
106
- prompt=prompt,
107
- max_tokens=512,
108
- n=1,
109
- stop=None,
110
- temperature=0.7,
111
- )
112
- message = completions.choices[0].text
113
- return message
114
-
115
-
116
- def generate_answer(question):
117
- topn_chunks = recommender(question)
118
- prompt = ""
119
- prompt += 'search results:\n\n'
120
- for c in topn_chunks:
121
- prompt += c + '\n\n'
122
 
123
- prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
124
- "Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\
125
- "Citation should be done at the end of each sentence. If the search results mention multiple subjects "\
126
- "with the same name, create separate answers for each. Only include information found in the results and "\
127
- "don't add any additional information. Make sure the answer is correct and don't output false content. "\
128
- "If the text does not relate to the query, simply state 'Found Nothing'. Ignore outlier "\
129
- "search results which has nothing to do with the question. Only answer what is asked. The "\
130
- "answer should be short and concise. \n\nQuery: {question}\nAnswer: "
131
-
132
- prompt += f"Query: {question}\nAnswer:"
133
- answer = generate_text(prompt,"text-davinci-003")
134
- return answer
135
-
136
-
137
- def question_answer(url, file, question):
138
- if url.strip() == '' and file == None:
139
- return '[ERROR]: Both URL and PDF is empty. Provide atleast one.'
140
-
141
- if url.strip() != '' and file != None:
142
- return '[ERROR]: Both URL and PDF is provided. Please provide only one (eiter URL or PDF).'
143
-
144
- if url.strip() != '':
145
- glob_url = url
146
- download_pdf(glob_url, 'corpus.pdf')
147
- load_recommender('corpus.pdf')
148
-
149
- else:
150
- old_file_name = file.name
151
- file_name = file.name
152
- file_name = file_name[:-12] + file_name[-4:]
153
- os.rename(old_file_name, file_name)
154
- load_recommender(file_name)
155
-
156
- if question.strip() == '':
157
- return '[ERROR]: Question field is empty'
158
-
159
- return generate_answer(question)
160
-
161
 
162
  recommender = SemanticSearch()
163
 
164
- title = 'CauseWriter PDF'
165
- description = """ PDF GPT allows you to chat with your PDF file using Universal Sentence Encoder and Open AI. It gives hallucination free response than other tools as the embeddings are better than OpenAI. The returned response can even cite the page number in square brackets([]) where the information is located, adding credibility to the responses and helping to locate pertinent information quickly."""
166
-
167
-
168
- with gr.Blocks() as demo:
169
-
170
- gr.Markdown(f'<center><h1>{title}</h1></center>')
171
- gr.Markdown(description)
172
-
173
- with gr.Row():
174
 
175
- with gr.Group():
176
- url = gr.Textbox(label='Enter PDF URL here')
177
- gr.Markdown("<center><h4>OR<h4></center>")
178
- file = gr.File(label='Upload your PDF/ Research Paper / Book here', file_types=['.pdf'])
179
- question = gr.Textbox(label='Enter your question here')
180
- btn = gr.Button(value='Submit')
181
- btn.style(full_width=True)
182
-
183
- with gr.Group():
184
- answer = gr.Textbox(label='The answer to your question is :')
185
-
186
- btn.click(question_answer, inputs=[url, file, question], outputs=[answer])
187
-
188
- demo.launch()
 
 
 
 
 
 
 
 
1
  import urllib.request
2
+ import fitz # PyMuPDF
3
  import re
4
  import numpy as np
5
  import tensorflow_hub as hub
 
 
 
6
  from sklearn.neighbors import NearestNeighbors
7
+ import os
8
+ import gradio as gr
9
 
10
  def download_pdf(url, output_path):
11
+ try:
12
+ urllib.request.urlretrieve(url, output_path)
13
+ return True
14
+ except Exception as e:
15
+ print(f"Error downloading PDF: {e}")
16
+ return False
17
 
18
  def preprocess(text):
19
  text = text.replace('\n', ' ')
20
+ text = re.sub('\s+', ' ', text).strip()
21
  return text
22
 
 
23
  def pdf_to_text(path, start_page=1, end_page=None):
24
+ try:
25
+ doc = fitz.open(path)
26
+ total_pages = doc.page_count
27
 
28
+ if end_page is None:
29
+ end_page = total_pages
30
 
31
+ text_list = []
32
 
33
+ for i in range(start_page - 1, end_page):
34
+ page = doc.load_page(i)
35
+ text = page.get_text("text")
36
+ text = preprocess(text)
37
+ text_list.append(text)
 
 
38
 
39
+ doc.close()
40
+ return text_list
41
+ except Exception as e:
42
+ print(f"Error in PDF to text conversion: {e}")
43
+ return None
44
 
45
  def text_to_chunks(texts, word_length=150, start_page=1):
46
+ text_tokens = [t.split(' ') for t in texts]
 
47
  chunks = []
48
+
49
+ for idx, words in enumerate(text_tokens):
50
  for i in range(0, len(words), word_length):
51
+ chunk = words[i:i + word_length]
 
 
 
 
52
  chunk = ' '.join(chunk).strip()
53
+ chunk = f'[Page no. {idx + start_page}] ' + chunk
54
  chunks.append(chunk)
55
+
56
  return chunks
57
 
 
58
  class SemanticSearch:
 
59
  def __init__(self):
60
  self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
61
  self.fitted = False
62
+
63
+ def fit(self, data):
 
64
  self.data = data
65
+ self.embeddings = self.use(data)
66
+ self.nn = NearestNeighbors(n_neighbors=5)
 
67
  self.nn.fit(self.embeddings)
68
  self.fitted = True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
+ def __call__(self, text):
71
+ if not self.fitted:
72
+ return "Model not fitted yet."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
+ query_embedding = self.use([text])
75
+ neighbors = self.nn.kneighbors(query_embedding, return_distance=False)[0]
76
+ return [self.data[i] for i in neighbors]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
  recommender = SemanticSearch()
79
 
80
+ def gui(url, question):
81
+ if url.strip():
82
+ if not download_pdf(url, "temp.pdf"):
83
+ return "Failed to download PDF."
 
 
 
 
 
 
84
 
85
+ texts = pdf_to_text("temp.pdf")
86
+ if texts is None:
87
+ return "Failed to extract text from PDF."
88
+
89
+ chunks = text_to_chunks(texts)
90
+ recommender.fit(chunks)
91
+ else:
92
+ return "Please provide a valid URL."
93
+
94
+ if question.strip():
95
+ results = recommender(question)
96
+ return results
97
+ else:
98
+ return "Please enter a question."
99
+
100
+ iface = gr.Interface(
101
+ fn=gui,
102
+ inputs=["text", "text"],
103
+ outputs="text"
104
+ )
105
+ iface.launch()