Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,22 +6,18 @@ from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
|
6 |
import os
|
7 |
HUGGINGFACEHUB_API_TOKEN = os.environ["token"]
|
8 |
|
9 |
-
def clean_(
|
10 |
-
s =
|
11 |
-
s = s.replace("\n", "=")
|
12 |
return re.split('=', s, maxsplit=1)[-1].strip()
|
13 |
|
14 |
-
def similarity_search2(vectordb, query, k, unique="True"):
|
15 |
print(f"\nQuery Key: {query}, \nrows requested:{k}\nUnique values:{unique}")
|
16 |
-
|
17 |
-
|
18 |
-
for d in D:
|
19 |
-
temp.append(clean_(d))
|
20 |
-
del D
|
21 |
-
if unique == "True":
|
22 |
-
return str(np.unique(np.array(temp)))[1:-1]
|
23 |
else:
|
24 |
-
|
|
|
|
|
25 |
|
26 |
with gr.Blocks() as demo:
|
27 |
gr.Markdown(
|
@@ -31,7 +27,7 @@ with gr.Blocks() as demo:
|
|
31 |
with gr.Row():
|
32 |
with gr.Column():
|
33 |
query = gr.Textbox(placeholder="your query", label="Query")
|
34 |
-
k = gr.Slider(
|
35 |
unique = gr.Radio(["True", "False"], label="Return Unique values")
|
36 |
with gr.Row():
|
37 |
btn = gr.Button("Submit")
|
@@ -41,14 +37,16 @@ with gr.Blocks() as demo:
|
|
41 |
embedding = HuggingFaceBgeEmbeddings(
|
42 |
model_name = model_id,
|
43 |
model_kwargs = model_kwargs,
|
44 |
-
|
|
|
45 |
)
|
46 |
-
persist_directory = "
|
47 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
|
48 |
return similarity_search2(vectordb, query, k, unique)
|
49 |
with gr.Column():
|
50 |
output = gr.Textbox(scale=10, label="Output")
|
51 |
btn.click(mmt_query, [query, k, unique], output)
|
52 |
-
|
|
|
53 |
# demo.queue()
|
54 |
-
demo.launch()
|
|
|
6 |
import os
|
7 |
HUGGINGFACEHUB_API_TOKEN = os.environ["token"]
|
8 |
|
9 |
+
def clean_(s):
|
10 |
+
s = s.replace("\n0: ", "=")
|
|
|
11 |
return re.split('=', s, maxsplit=1)[-1].strip()
|
12 |
|
13 |
+
def similarity_search2(vectordb, query, k=1, unique="True"):
|
14 |
print(f"\nQuery Key: {query}, \nrows requested:{k}\nUnique values:{unique}")
|
15 |
+
if unique == "False":
|
16 |
+
vals = vectordb.similarity_search(query,k=k)
|
|
|
|
|
|
|
|
|
|
|
17 |
else:
|
18 |
+
vals = vectordb.similarity_search(query,k=1)
|
19 |
+
for val in vals:
|
20 |
+
return clean_(val.page_content)
|
21 |
|
22 |
with gr.Blocks() as demo:
|
23 |
gr.Markdown(
|
|
|
27 |
with gr.Row():
|
28 |
with gr.Column():
|
29 |
query = gr.Textbox(placeholder="your query", label="Query")
|
30 |
+
k = gr.Slider(1,306,1, label="number of samples to check")
|
31 |
unique = gr.Radio(["True", "False"], label="Return Unique values")
|
32 |
with gr.Row():
|
33 |
btn = gr.Button("Submit")
|
|
|
37 |
embedding = HuggingFaceBgeEmbeddings(
|
38 |
model_name = model_id,
|
39 |
model_kwargs = model_kwargs,
|
40 |
+
cache_folder=r"models",
|
41 |
+
encode_kwargs = {'normalize_embeddings':True},
|
42 |
)
|
43 |
+
persist_directory = "MMT_unique"
|
44 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
|
45 |
return similarity_search2(vectordb, query, k, unique)
|
46 |
with gr.Column():
|
47 |
output = gr.Textbox(scale=10, label="Output")
|
48 |
btn.click(mmt_query, [query, k, unique], output)
|
49 |
+
|
50 |
+
# interface = gr.Interface(fn=auto_eda, inputs="dataframe", outputs="json")
|
51 |
# demo.queue()
|
52 |
+
demo.launch(share=True)
|