whoami02 commited on
Commit
4f94a4a
·
verified ·
1 Parent(s): a6ce51e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -17
app.py CHANGED
@@ -6,22 +6,18 @@ from langchain_community.embeddings import HuggingFaceBgeEmbeddings
6
  import os
7
  HUGGINGFACEHUB_API_TOKEN = os.environ["token"]
8
 
9
- def clean_(l):
10
- s = list(l)[0][1]
11
- s = s.replace("\n", "=")
12
  return re.split('=', s, maxsplit=1)[-1].strip()
13
 
14
- def similarity_search2(vectordb, query, k, unique="True"):
15
  print(f"\nQuery Key: {query}, \nrows requested:{k}\nUnique values:{unique}")
16
- D = vectordb.similarity_search(query,k)
17
- temp = []
18
- for d in D:
19
- temp.append(clean_(d))
20
- del D
21
- if unique == "True":
22
- return str(np.unique(np.array(temp)))[1:-1]
23
  else:
24
- return str(np.array(temp))[1:-1]
 
 
25
 
26
  with gr.Blocks() as demo:
27
  gr.Markdown(
@@ -31,7 +27,7 @@ with gr.Blocks() as demo:
31
  with gr.Row():
32
  with gr.Column():
33
  query = gr.Textbox(placeholder="your query", label="Query")
34
- k = gr.Slider(10,100000,5, label="number of samples to check")
35
  unique = gr.Radio(["True", "False"], label="Return Unique values")
36
  with gr.Row():
37
  btn = gr.Button("Submit")
@@ -41,14 +37,16 @@ with gr.Blocks() as demo:
41
  embedding = HuggingFaceBgeEmbeddings(
42
  model_name = model_id,
43
  model_kwargs = model_kwargs,
44
- encode_kwargs = {'normalize_embeddings':True}
 
45
  )
46
- persist_directory = "db_book_mmt"
47
  vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
48
  return similarity_search2(vectordb, query, k, unique)
49
  with gr.Column():
50
  output = gr.Textbox(scale=10, label="Output")
51
  btn.click(mmt_query, [query, k, unique], output)
52
-
 
53
  # demo.queue()
54
- demo.launch()
 
6
  import os
7
  HUGGINGFACEHUB_API_TOKEN = os.environ["token"]
8
 
9
+ def clean_(s):
10
+ s = s.replace("\n0: ", "=")
 
11
  return re.split('=', s, maxsplit=1)[-1].strip()
12
 
13
+ def similarity_search2(vectordb, query, k=1, unique="True"):
14
  print(f"\nQuery Key: {query}, \nrows requested:{k}\nUnique values:{unique}")
15
+ if unique == "False":
16
+ vals = vectordb.similarity_search(query,k=k)
 
 
 
 
 
17
  else:
18
+ vals = vectordb.similarity_search(query,k=1)
19
+ for val in vals:
20
+ return clean_(val.page_content)
21
 
22
  with gr.Blocks() as demo:
23
  gr.Markdown(
 
27
  with gr.Row():
28
  with gr.Column():
29
  query = gr.Textbox(placeholder="your query", label="Query")
30
+ k = gr.Slider(1,306,1, label="number of samples to check")
31
  unique = gr.Radio(["True", "False"], label="Return Unique values")
32
  with gr.Row():
33
  btn = gr.Button("Submit")
 
37
  embedding = HuggingFaceBgeEmbeddings(
38
  model_name = model_id,
39
  model_kwargs = model_kwargs,
40
+ cache_folder=r"models",
41
+ encode_kwargs = {'normalize_embeddings':True},
42
  )
43
+ persist_directory = "MMT_unique"
44
  vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
45
  return similarity_search2(vectordb, query, k, unique)
46
  with gr.Column():
47
  output = gr.Textbox(scale=10, label="Output")
48
  btn.click(mmt_query, [query, k, unique], output)
49
+
50
+ # interface = gr.Interface(fn=auto_eda, inputs="dataframe", outputs="json")
51
  # demo.queue()
52
+ demo.launch(share=True)