Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings | |
from langchain_community.vectorstores import Chroma | |
from langchain.retrievers import MultiQueryRetriever | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.memory import ConversationBufferWindowMemory | |
from langchain_community.llms import llamacpp, huggingface_hub | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from langchain.chains.question_answering import load_qa_chain | |
from huggingface_hub import hf_hub_download, login | |
login(os.environ['hf_token']) | |
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a | |
standalone question without changing the content in given question. | |
Chat History: | |
{chat_history} | |
Follow Up Input: {question} | |
Standalone question:""" | |
system_prompt = """You are a helpful assistant, you will use the provided context to answer user questions. | |
Read the given context before answering questions and think step by step. If you can not answer a user question based on the provided context, inform the user. | |
Do not use any other information for answering the user. Provide a detailed answer to the question.""" | |
def load_llmware_model(): | |
return huggingface_hub.HuggingFaceHub( | |
repo_id = "llmware/bling-sheared-llama-2.7b-0.1", | |
task="text-generation", | |
# verbose=True, | |
huggingfacehub_api_token=os.environ['hf_token'], | |
model_kwargs={ | |
'temperature':0.03, | |
} | |
) | |
def load_quantized_model(model_id=None): | |
MODEL_ID, MODEL_BASENAME = "TheBloke/zephyr-7B-beta-GGUF","zephyr-7b-beta.Q5_K_S.gguf" | |
try: | |
model_path = hf_hub_download( | |
repo_id=MODEL_ID, | |
filename=MODEL_BASENAME, | |
resume_download=True, | |
cache_dir = "models" | |
) | |
kwargs = { | |
'model_path': model_path, | |
'n_ctx': 10000, | |
'max_tokens': 10000, | |
'n_batch': 512, | |
# 'n_gpu_layers':6, | |
} | |
return llamacpp.LlamaCpp(**kwargs) | |
except TypeError: | |
print("Supported model architecture: Llama, Mistral") | |
return None | |
def upload_files(files): | |
file_paths = [file.name for file in files] | |
return file_paths | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
<h2> <center> PrivateGPT </center> </h2> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Row(): | |
model_id = gr.Radio(["Zephyr-7b-Beta", "Llama-2-7b-chat"], value="Llama-2-7b-chat",label="LLM Model") | |
with gr.Row(): | |
mode = gr.Radio(['OITF Manuals', 'Operations Data'], value='OITF Manuals',label="Data") | |
persist_directory = "db" | |
embeddings = HuggingFaceBgeEmbeddings( | |
model_name = "BAAI/bge-small-en-v1.5", | |
model_kwargs={"device": "cpu"}, | |
encode_kwargs = {'normalize_embeddings':True}, | |
cache_folder="models", | |
) | |
db2 = Chroma(persist_directory = persist_directory,embedding_function = embeddings) | |
# llm = load_quantized_model(model_id=model_id) #type:ignore | |
# --------------------------------------------------------------------------------------------------- | |
llm = load_quantized_model() | |
llm_sm = load_llmware_model() | |
# --------------------------------------------------------------------------------------------------- | |
condense_question_prompt_template = PromptTemplate.from_template(_template) | |
prompt_template = system_prompt + """ | |
{context} | |
Question: {question} | |
Helpful Answer:""" | |
qa_prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
memory = ConversationBufferWindowMemory(memory_key='chat_history', k=1, return_messages=True) | |
retriever_from_llm = MultiQueryRetriever.from_llm( | |
retriever=db2.as_retriever(search_kwargs={'k':5}), | |
llm = llm_sm, | |
) | |
qa2 = ConversationalRetrievalChain( | |
retriever=retriever_from_llm, | |
question_generator= LLMChain(llm=llm_sm, prompt=condense_question_prompt_template, memory=memory, verbose=True), #type:ignore | |
combine_docs_chain=load_qa_chain(llm=llm, chain_type="stuff", prompt=qa_prompt, verbose=True), #type:ignore | |
memory=memory, | |
verbose=True, | |
# type: ignore | |
) | |
def add_text(history, text): | |
history = history + [(text, None)] | |
return history, "" | |
def bot(history): | |
res = qa2.invoke( | |
{ | |
'question': history[-1][0], | |
'chat_history': history[:-1] | |
} | |
) | |
history[-1][1] = res['answer'] | |
# torch.cuda.empty_cache() | |
return history | |
with gr.Column(scale=9): # type: ignore | |
with gr.Row(): | |
chatbot = gr.Chatbot([], elem_id="chatbot",label="Chat", height=500, show_label=True, avatar_images=["user.jpeg","Bot.jpg"]) | |
with gr.Row(): | |
with gr.Column(scale=8): # type: ignore | |
txt = gr.Textbox( | |
show_label=False, | |
placeholder="Enter text and press enter", | |
container=False, | |
) | |
with gr.Column(scale=1): # type: ignore | |
submit_btn = gr.Button( | |
'Submit', | |
variant='primary' | |
) | |
with gr.Column(scale=1): # type: ignore | |
clear_btn = gr.Button( | |
'Clear', | |
variant="stop" | |
) | |
txt.submit(add_text, [chatbot, txt], [chatbot, txt]).then( | |
bot, chatbot, chatbot | |
) | |
submit_btn.click(add_text, [chatbot, txt], [chatbot, txt]).then( | |
bot, chatbot, chatbot | |
) | |
clear_btn.click(lambda: None, None, chatbot, queue=False) | |
if __name__ == "__main__": | |
demo.queue() | |
demo.launch(max_threads=8, debug=True) | |